




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省榆林市一中學(xué)分校2025屆初三第二學(xué)期月考二數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在解方程-1=時,兩邊同時乘6,去分母后,正確的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)2.在同一直角坐標(biāo)系中,二次函數(shù)y=x2與反比例函數(shù)y=1x(x>0)的圖象如圖所示,若兩個函數(shù)圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數(shù),令ω=x1+x2+x3A.1B.mC.m2D.13.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數(shù)為()A.125° B.135° C.145° D.155°4.下列說法正確的是()A.“買一張電影票,座位號為偶數(shù)”是必然事件B.若甲、乙兩組數(shù)據(jù)的方差分別為S甲2=0.3,S乙2=0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定C.一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5D.一組數(shù)據(jù)2,4,5,5,3,6的平均數(shù)是55.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F(xiàn)分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.126.下列計算正確的是()A.+= B.﹣= C.×=6 D.=47.在,,則的值為()A. B. C. D.8.函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點B.給出如下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CA=AP.其中所有正確結(jié)論的序號是()A.①②③ B.②③④ C.①③④ D.①②④9.下列幾何體是由4個相同的小正方體搭成的,其中左視圖與俯視圖相同的是()A. B. C. D.10.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.6二、填空題(共7小題,每小題3分,滿分21分)11.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達(dá)B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達(dá)A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數(shù)圖象,則當(dāng)乙車到達(dá)A地的時候,甲車與A地的距離為_____千米.12.若關(guān)于x的方程(k﹣1)x2﹣4x﹣5=0有實數(shù)根,則k的取值范圍是_____.13.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應(yīng)向每位乘客至少收取_____元保險費才能保證不虧本.14.某商品原價100元,連續(xù)兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.15.若一個三角形兩邊的垂直平分線的交點在第三邊上,則這個三角形是_____三角形.16.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.17.若函數(shù)y=m-2x的圖象在其所在的每一象限內(nèi),函數(shù)值y隨自變量x的增大而減小,則m的取值范圍是三、解答題(共7小題,滿分69分)18.(10分)如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F(xiàn),已知AE=3,BF=5(1)求BC的長;(2)如果兩條對角線長的和是20,求三角形△AOD的周長.19.(5分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式.求機場大巴與貨車相遇地到機場C的路程.20.(8分)已知平行四邊形.尺規(guī)作圖:作的平分線交直線于點,交延長線于點(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.21.(10分)如圖,△ABC中,點D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.22.(10分)如下表所示,有A、B兩組數(shù):第1個數(shù)第2個數(shù)第3個數(shù)第4個數(shù)……第9個數(shù)……第n個數(shù)A組﹣6﹣5﹣2……58……n2﹣2n﹣5B組14710……25……(1)A組第4個數(shù)是;用含n的代數(shù)式表示B組第n個數(shù)是,并簡述理由;在這兩組數(shù)中,是否存在同一列上的兩個數(shù)相等,請說明.23.(12分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當(dāng)∠B=______度時,以O(shè),D,E,C為頂點的四邊形是正方形.24.(14分)某校師生到距學(xué)校20千米的公路旁植樹,甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發(fā),結(jié)果兩班師生同時到達(dá),已知汽車的速度是自行車速度的2.5倍,求兩種車的速度各是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故選D.點睛:本題考查了等式的性質(zhì),解題的關(guān)鍵是正確理解等式的性質(zhì),本題屬于基礎(chǔ)題型.2、D【解析】
本題主要考察二次函數(shù)與反比例函數(shù)的圖像和性質(zhì).【詳解】令二次函數(shù)中y=m.即x2=m,解得x=m或x=-m.令反比例函數(shù)中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+巧妙借助三點縱坐標(biāo)相同的條件建立起兩個函數(shù)之間的聯(lián)系,從而解答.3、A【解析】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點睛:本題考查平行線的性質(zhì)、三角形內(nèi)角和定理,鄰補角的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.4、C【解析】
根據(jù)確定性事件、方差、眾數(shù)以及平均數(shù)的定義進(jìn)行解答即可.【詳解】解:A、“買一張電影票,座位號為偶數(shù)”是隨機事件,此選項錯誤;B、若甲、乙兩組數(shù)據(jù)的方差分別為S甲2=0.3,S乙2=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定,此選項錯誤;C、一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5,此選項正確;D、一組數(shù)據(jù)2,4,5,5,3,6的平均數(shù)是,此選項錯誤;故選:C.本題考查了必然事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、B【解析】
首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進(jìn)而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當(dāng)弦GH是圓的直徑時,它的值最大,進(jìn)而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F(xiàn)分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當(dāng)弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.本題結(jié)合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關(guān)鍵.6、B【解析】
根據(jù)同類二次根式才能合并可對A進(jìn)行判斷;根據(jù)二次根式的乘法對B進(jìn)行判斷;先把化為最簡二次根式,然后進(jìn)行合并,即可對C進(jìn)行判斷;根據(jù)二次根式的除法對D進(jìn)行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.此題考查二次根式的混合運算,注意先化簡,再進(jìn)一步利用計算公式和計算方法計算.7、A【解析】
本題可以利用銳角三角函數(shù)的定義求解即可.【詳解】解:tanA=,
∵AC=2BC,
∴tanA=.
故選:A.本題考查了正切函數(shù)的概念,掌握直角三角形中角的對邊與鄰邊的比是關(guān)鍵.8、C【解析】解:∵A、B是反比函數(shù)上的點,∴S△OBD=S△OAC=,故①正確;當(dāng)P的橫縱坐標(biāo)相等時PA=PB,故②錯誤;∵P是的圖象上一動點,∴S矩形PDOC=4,∴S四邊形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正確;連接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正確;綜上所述,正確的結(jié)論有①③④.故選C.點睛:本題考查的是反比例函數(shù)綜合題,熟知反比例函數(shù)中系數(shù)k的幾何意義是解答此題的關(guān)鍵.9、C【解析】試題分析:從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.選項C左視圖與俯視圖都是,故選C.10、A【解析】
根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.本題考查扇形面積的計算、矩形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.二、填空題(共7小題,每小題3分,滿分21分)11、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當(dāng)相遇后車共行駛了720千米時,甲車到達(dá)B地,由此則可求得兩車的速度.再根據(jù)甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設(shè)甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當(dāng)甲車到達(dá)B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當(dāng)乙車到達(dá)A地時,甲車離A地的距離為900-270=630千米.點睛:利用函數(shù)圖象解決實際問題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標(biāo)表示的意義,抓住交點,起點.終點等關(guān)鍵點,理解問題的發(fā)展過程,將實際問題抽象為數(shù)學(xué)問題,從而將這個數(shù)學(xué)問題變化為解答實際問題.12、【解析】當(dāng)k?1=0,即k=1時,原方程為?4x?5=0,解得:x=?,∴k=1符合題意;當(dāng)k?1≠0,即k≠1時,有,解得:k?且k≠1.綜上可得:k的取值范圍為k?.故答案為k?.13、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應(yīng)該收取保險費每人=21元.14、20%.【解析】試題分析:根據(jù)原價為100元,連續(xù)兩次漲價x后,現(xiàn)價為144元,根據(jù)增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應(yīng)用.15、直角三角形.【解析】
根據(jù)題意,畫出圖形,用垂直平分線的性質(zhì)解答.【詳解】點O落在AB邊上,連接CO,∵OD是AC的垂直平分線,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O(shè)為圓心,以AB為直徑的圓周上,∴∠C是直角.∴這個三角形是直角三角形.本題考查線段垂直平分線的性質(zhì),解題關(guān)鍵是準(zhǔn)確畫出圖形,進(jìn)行推理證明.16、22.5°【解析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).17、m>2【解析】試題分析:有函數(shù)y=m考點:反比例函數(shù)的性質(zhì).三、解答題(共7小題,滿分69分)18、(1)8;(2)1.【解析】
(1)由平行四邊形的性質(zhì)和已知條件易證△AOE≌△COF,所以可得AE=CF=3,進(jìn)而可求出BC的長;(2)由平行四邊形的性質(zhì):對角線互相平分可求出AO+OD的長,進(jìn)而可求出三角形△AOD的周長.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周長=AO+BO+AD=1.本題考查了平行四邊形的性質(zhì)和全等三角形的判定以及全等三角形的性質(zhì),能夠根據(jù)平行四邊形的性質(zhì)證明三角形全等,再根據(jù)全等三角形的性質(zhì)將所求的線段轉(zhuǎn)化為已知的線段是解題的關(guān)鍵.19、(1)連接A、B兩市公路的路程為80km,貨車由B市到達(dá)A市所需時間為h;(2)y=﹣80x+60(0≤x≤);(3)機場大巴與貨車相遇地到機場C的路程為km.【解析】
(1)根據(jù)可求出連接A、B兩市公路的路程,再根據(jù)貨車h行駛20km可求出貨車行駛60km所需時間;(2)根據(jù)函數(shù)圖象上點的坐標(biāo),利用待定系數(shù)法即可求出機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式;(3)利用待定系數(shù)法求出線段ED對應(yīng)的函數(shù)表達(dá)式,聯(lián)立兩函數(shù)表達(dá)式成方程組,通過解方程組可求出機場大巴與貨車相遇地到機場C的路程.【詳解】解:(1)60+20=80(km),(h)∴連接A.
B兩市公路的路程為80km,貨車由B市到達(dá)A市所需時間為h.(2)設(shè)所求函數(shù)表達(dá)式為y=kx+b(k≠0),將點(0,60)、代入y=kx+b,得:解得:∴機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式為(3)設(shè)線段ED對應(yīng)的函數(shù)表達(dá)式為y=mx+n(m≠0)將點代入y=mx+n,得:解得:∴線段ED對應(yīng)的函數(shù)表達(dá)式為解方程組得∴機場大巴與貨車相遇地到機場C的路程為km.本題考查一次函數(shù)的應(yīng)用,掌握待定系數(shù)法求函數(shù)關(guān)系式是解題的關(guān)鍵,本題屬于中檔題,難度不大,但過程比較繁瑣,因此再解決該題是一定要細(xì)心.20、(1)見解析;(2)見解析.【解析】試題分析:(1)作∠BAD的平分線交直線BC于點E,交DC延長線于點F即可;(2)先根據(jù)平行四邊形的性質(zhì)得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據(jù)此可得出結(jié)論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點:作圖—基本作圖;平行四邊形的性質(zhì).21、BD=2.【解析】
試題分析:根據(jù)∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性質(zhì)得出AB的長,從而求出DB的長.試題解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.點睛:本題主要考查了相似三角形的判定以及相似三角形的性質(zhì),利用相似三角形的性質(zhì)求出AB的長是解題關(guān)鍵.22、(1)3;(2),理由見解析;理由見解析(3)不存在,理由見解析【解析】
(1)將n=4代入n2-2n-5中即可求解;(2)當(dāng)n=1,2,3,…,9,…,時對應(yīng)的數(shù)分別為3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可歸納出第n個數(shù)是3n-2;(3)“在這兩組數(shù)中,是否存在同一列上的兩個數(shù)相等”,將問題轉(zhuǎn)換為n2-2n-5=3n-2有無正整數(shù)解的問題.【詳解】解:(1))∵A組第n個數(shù)為n2-2n-5,∴A組第4個數(shù)是42-2×4-5=3,故答案為3;(2)第n個數(shù)是.理由如下:∵第1個數(shù)為1,可寫成3×1-2;第2個數(shù)為4,可寫成3×2-2;第3個數(shù)為7,可寫成3×3-2;第4個數(shù)為10,可寫成3×4-2;……第9個數(shù)為25,可寫成3×9-2;∴第n個數(shù)為3n-2;故答案為3n-2;(3)不存在同一位置上存在兩個數(shù)據(jù)相等;由題意得,,解之得,由于是正整數(shù),所以不存在列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新疆第十二師招聘特崗教師考試真題
- 2024年湖北省住房和城鄉(xiāng)建設(shè)廳下屬事業(yè)單位真題
- 2024年漯河醫(yī)學(xué)高等專科學(xué)校招聘工作人員真題
- 自助售票機定制化服務(wù)行業(yè)跨境出海項目商業(yè)計劃書
- 遠(yuǎn)程重癥監(jiān)護(hù)系統(tǒng)行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 醫(yī)藥包裝材料回收機行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 2025年二手電商平臺信用評級與信用修復(fù)機制研究報告
- DB1302T 532-2021 農(nóng)業(yè)社會化服務(wù) 生產(chǎn)資料供給服務(wù)規(guī)范
- 2025年動漫產(chǎn)業(yè)鏈協(xié)同創(chuàng)新與產(chǎn)業(yè)品牌建設(shè)實施報告
- 2025年低碳城市建設(shè)規(guī)劃與云南案例分析報告
- DB34∕T 4499-2023 智慧手術(shù)室建設(shè)指南
- 個人外匯管理辦法實施問答(一二三四期)
- 2024至2030年中國卷揚機及絞盤行業(yè)發(fā)展預(yù)測及投資策略報告
- 1到12月單詞練習(xí)題
- AQ 1119-2023 煤礦井下人員定位系統(tǒng)技術(shù)條件
- GB/T 15597.1-2024塑料聚甲基丙烯酸甲酯(PMMA)模塑和擠出材料第1部分:命名系統(tǒng)和分類基礎(chǔ)
- 胸腰椎爆裂性骨折護(hù)理查房課件
- 美容頸部護(hù)理課件
- T-CARM 002-2023 康復(fù)醫(yī)院建設(shè)標(biāo)準(zhǔn)
- 殯儀館物業(yè)服務(wù)方案
- 科技助力植樹節(jié):無人機、機器人種樹新趨勢
評論
0/150
提交評論