新疆吐魯番市高昌區(qū)市級名校2025年高中第一次統(tǒng)考數(shù)學試題含解析_第1頁
新疆吐魯番市高昌區(qū)市級名校2025年高中第一次統(tǒng)考數(shù)學試題含解析_第2頁
新疆吐魯番市高昌區(qū)市級名校2025年高中第一次統(tǒng)考數(shù)學試題含解析_第3頁
新疆吐魯番市高昌區(qū)市級名校2025年高中第一次統(tǒng)考數(shù)學試題含解析_第4頁
新疆吐魯番市高昌區(qū)市級名校2025年高中第一次統(tǒng)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆吐魯番市高昌區(qū)市級名校2025年高中第一次統(tǒng)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠FED′的度數(shù)為()A.40° B.36° C.50° D.45°2.-10-4的結果是()A.-7B.7C.-14D.133.下列運算中,正確的是()A.x2+5x2=6x4 B.x3 C. D.4.若關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則m的取值范圍是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>15.已知二次函數(shù)y=(x+a)(x﹣a﹣1),點P(x0,m),點Q(1,n)都在該函數(shù)圖象上,若m<n,則x0的取值范圍是()A.0≤x0≤1 B.0<x0<1且x0≠C.x0<0或x0>1 D.0<x0<16.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.7.將拋物線y=x2﹣6x+21向左平移2個單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+38.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.39.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)10.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.19二、填空題(共7小題,每小題3分,滿分21分)11.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為_____.12.如圖,直線y1=mx經(jīng)過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.13.計算:cos245°-tan30°sin60°=______.14.觀察下列的“蜂窩圖”按照它呈現(xiàn)的規(guī)律第n個圖案中的“”的個數(shù)是_____(用含n的代數(shù)式表示)15.如果關于x的方程x2+2ax﹣b2+2=0有兩個相等的實數(shù)根,且常數(shù)a與b互為倒數(shù),那么a+b=_____.16.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當扇形AOB的半徑為2時,陰影部分的面積為__________.17.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結果保留)三、解答題(共7小題,滿分69分)18.(10分)某水果店購進甲乙兩種水果,銷售過程中發(fā)現(xiàn)甲種水果比乙種水果銷售量大,店主決定將乙種水果降價1元促銷,降價后30元可購買乙種水果的斤數(shù)是原來購買乙種水果斤數(shù)的1.5倍.(1)求降價后乙種水果的售價是多少元/斤?(2)根據(jù)銷售情況,水果店用不多于900元的資金再次購進兩種水果共500斤,甲種水果進價為2元/斤,乙種水果進價為1.5元/斤,問至少購進乙種水果多少斤?19.(5分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側),直線l與拋物線交于A,C兩點,其中點C的橫坐標為1.(1)求A,B兩點的坐標及直線AC的函數(shù)表達式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最小?若存在,求出這個最小值及點M,N的坐標;若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.20.(8分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.21.(10分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.22.(10分)已知一個二次函數(shù)的圖象經(jīng)過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數(shù)解析式以及點C的坐標.23.(12分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.24.(14分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:請將以上兩幅統(tǒng)計圖補充完整;若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有_▲人達標;若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,與三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.2、C【解析】解:-10-4=-1.故選C.3、C【解析】分析:直接利用積的乘方運算法則及合并同類項和同底數(shù)冪的乘除運算法則分別分析得出結果.詳解:A.x2+5x2=,本項錯誤;B.,本項錯誤;C.,正確;D.,本項錯誤.故選C.點睛:本題主要考查了積的乘方運算及合并同類項和同底數(shù)冪的乘除運算,解答本題的關鍵是正確掌握運算法則.4、B【解析】

根據(jù)方程有兩個不相等的實數(shù)根結合根的判別式即可得出△=4-4m>0,解之即可得出結論.【詳解】∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故選B.本題考查了根的判別式,熟練掌握“當△>0時,方程有兩個不相等的兩個實數(shù)根”是解題的關鍵.5、D【解析】分析:先求出二次函數(shù)的對稱軸,然后再分兩種情況討論,即可解答.詳解:二次函數(shù)y=(x+a)(x﹣a﹣1),當y=0時,x1=﹣a,x2=a+1,∴對稱軸為:x==當P在對稱軸的左側(含頂點)時,y隨x的增大而減小,由m<n,得:0<x0≤;當P在對稱軸的右側時,y隨x的增大而增大,由m<n,得:<x0<1.綜上所述:m<n,所求x0的取值范圍0<x0<1.故選D.點睛:本題考查了二次函數(shù)圖象上點的坐標特征,解決本題的關鍵是利用二次函數(shù)的性質,要分類討論,以防遺漏.6、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.7、D【解析】

直接利用配方法將原式變形,進而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關鍵.8、D【解析】

直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.此題主要考查了冪的乘方運算,正確將原式變形是解題關鍵.9、D【解析】

由表易得x+(10-x)=10,所以總人數(shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總人數(shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.10、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、(,0)【解析】試題解析:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故答案為(,0).12、-4<x<1【解析】將P(1,1)代入解析式y(tǒng)1=mx,先求出m的值為,將Q點縱坐標y=1代入解析式y(tǒng)=x,求出y1=mx的橫坐標x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.

故答案為-4<x<1.

點睛:本題考查了一次函數(shù)與一元一次不等式,求出函數(shù)圖象的交點坐標及函數(shù)與x軸的交點坐標是解題的關鍵.13、0【解析】

直接利用特殊角的三角函數(shù)值代入進而得出答案.【詳解】=.故答案為0.此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.14、3n+1【解析】

根據(jù)題意可知:第1個圖有4個圖案,第2個共有7個圖案,第3個共有10個圖案,第4個共有13個圖案,由此可得出規(guī)律.【詳解】解:由題意可知:每1個都比前一個多出了3個“”,∴第n個圖案中共有“”為:4+3(n﹣1)=3n+1故答案為:3n+1.本題考查學生的觀察能力,解題的關鍵是熟練正確找出圖中的規(guī)律,本題屬于基礎題型.15、±1.【解析】

根據(jù)根的判別式求出△=0,求出a1+b1=1,根據(jù)完全平方公式求出即可.【詳解】解:∵關于x的方程x1+1ax-b1+1=0有兩個相等的實數(shù)根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常數(shù)a與b互為倒數(shù),∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案為±1.本題考查了根的判別式和解高次方程,能得出等式a1+b1=1和ab=1是解此題的關鍵.16、π﹣1【解析】

根據(jù)勾股定理可求OC的長,根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.本題考查正方形的性質和扇形面積的計算,解題關鍵是得到扇形半徑的長度.17、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.三、解答題(共7小題,滿分69分)18、(1)降價后乙種水果的售價是2元/斤;(2)至少購進乙種水果200斤.【解析】

(1)設降價后乙種水果的售價是x元,30元可購買乙種水果的斤數(shù)是,原來購買乙種水果斤數(shù)是,根據(jù)題意即可列出等式;(2)設至少購進乙種水果y斤,甲種水果(500﹣y)斤,有甲乙的單價,總斤數(shù)≤900即可列出不等式,求解即可.【詳解】解:(1)設降價后乙種水果的售價是x元,根據(jù)題意可得:,解得:x=2,經(jīng)檢驗x=2是原方程的解,答:降價后乙種水果的售價是2元/斤;(2)設至少購進乙種水果y斤,根據(jù)題意可得:2(500﹣y)+1.5y≤900,解得:y≥200,答:至少購進乙種水果200斤.本題考查了分式的應用和一元一次不等式的應用,根據(jù)題意列出式子是解題的關鍵19、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),F(xiàn)3(4+,0),F(xiàn)4(4﹣,0).【解析】

(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點的坐標,根據(jù)兩點式求出直線AC的函數(shù)表達式;

(1)設P點的橫坐標為x(-1≤x≤1),求出P、E的坐標,用x表示出線段PE的長,求出PE的最大值,進而求出△ACE的面積最大值;

(3)根據(jù)D點關于PE的對稱點為點C(1,-3),點Q(0,-1)點關于x軸的對稱點為M(0,1),則四邊形DMNQ的周長最小,求出直線CM的解析式為y=-1x+1,進而求出最小值和點M,N的坐標;

(4)結合圖形,分兩類進行討論,①CF平行x軸,如圖1,此時可以求出F點兩個坐標;②CF不平行x軸,如題中的圖1,此時可以求出F點的兩個坐標.【詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點的橫坐標x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數(shù)解析式是(1)設P點的橫坐標為x(﹣1≤x≤1),則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點在E點的上方,∴當時,PE的最大值△ACE的面積最大值(3)D點關于PE的對稱點為點C(1,﹣3),點Q(0,﹣1)點關于x軸的對稱點為K(0,1),連接CK交直線PE于M點,交x軸于N點,可求直線CK的解析式為,此時四邊形DMNQ的周長最小,最小值求得M(1,﹣1),(4)存在如圖1,若AF∥CH,此時的D和H點重合,CD=1,則AF=1,于是可得F1(1,0),F(xiàn)1(﹣3,0),如圖1,根據(jù)點A和F的坐標中點和點C和點H的坐標中點相同,再根據(jù)|HA|=|CF|,求出綜上所述,滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),,.屬于二次函數(shù)綜合題,考查二次函數(shù)與軸的交點坐標,待定系數(shù)法求一次函數(shù)解析式,二次函數(shù)的最值以及平行四邊形的性質等,綜合性比較強,難度較大.20、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點:翻折變換(折疊問題);矩形的性質;相似形綜合題.21、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】

(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結論;

②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;

(2)先確定出B(1,),D(1,),進而求出點P的坐標,再求出A,C坐標,最后用AC=BD,即可得出結論.【詳解】(1)①如圖1,,反比例函數(shù)為,當時,,,當時,,,,設直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點是線段的中點,,當時,由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當四邊形是正方形,記,的交點為,,當時,,,,,,,,,,.此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質,正方形的性質,判斷出四邊形ABCD是平行四邊形是解本題的關鍵.22、y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論