甘肅省張掖四中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第1頁
甘肅省張掖四中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第2頁
甘肅省張掖四中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第3頁
甘肅省張掖四中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第4頁
甘肅省張掖四中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省張掖四中學(xué)2024屆中考數(shù)學(xué)四模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將繞直角頂點順時針旋轉(zhuǎn),得到,連接,若,則的度數(shù)是()A. B. C. D.2.下列四個圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°4.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④5.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.26.下列運算中,正確的是()A.x2+5x2=6x4 B.x3 C. D.7.如圖,直角坐標平面內(nèi)有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.8.一次函數(shù)滿足,且隨的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°10.如圖,在正方形ABCD中,E為AB的中點,G,F(xiàn)分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側(cè),連接BD,交AC于點O,取AC,BD的中點E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.12.對于實數(shù)a,b,我們定義符號max{a,b}的意義為:當(dāng)a≥b時,max{a,b}=a;當(dāng)a<b時,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若關(guān)于x的函數(shù)為y=max{x+3,﹣x+1},則該函數(shù)的最小值是_____.13.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.14.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn),,DE=6,則EF=.15.小蕓一家計劃去某城市旅行,需要做自由行的攻略,父母給她分配了一項任務(wù):借助網(wǎng)絡(luò)評價選取該城市的一家餐廳用餐.小蕓根據(jù)家人的喜好,選擇了甲、乙、丙三家餐廳,對每家餐廳隨機選取了1000條網(wǎng)絡(luò)評價,統(tǒng)計如下:評價條數(shù)等級餐廳五星四星三星二星一星合計甲53821096129271000乙460187154169301000丙4863888113321000(說明:網(wǎng)上對于餐廳的綜合評價從高到低,依次為五星、四星、三星、二星和一星.)小蕓選擇在________(填"甲”、“乙"或“丙”)餐廳用餐,能獲得良好用餐體驗(即評價不低于四星)的可能性最大.16.如圖,ABCD是菱形,AC是對角線,點E是AB的中點,過點E作對角線AC的垂線,垂足是點M,交AD邊于點F,連結(jié)DM.若∠BAD=120°,AE=2,則DM=__.三、解答題(共8題,共72分)17.(8分)已知:如圖,點A,F(xiàn),C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.18.(8分)如圖,在航線l的兩側(cè)分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)19.(8分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側(cè),連接OP.求證:AP=BQ;當(dāng)BQ=時,求的長(結(jié)果保留);若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.20.(8分)在陽光體育活動時間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時只有一副空球桌,他們只能選兩人打第一場.(1)如果確定小亮打第一場,再從其余三人中隨機選取一人打第一場,求恰好選中大剛的概率;(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.21.(8分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.22.(10分)某學(xué)校準備采購一批茶藝耗材和陶藝耗材.經(jīng)查詢,如果按照標價購買兩種耗材,當(dāng)購買茶藝耗材的數(shù)量是陶藝耗材數(shù)量的2倍時,購買茶藝耗材共需要18000元,購買陶藝耗材共需要12000元,且一套陶藝耗材單價比一套茶藝耗材單價貴150元.求一套茶藝耗材、一套陶藝耗材的標價分別是多少元?學(xué)校計劃購買相同數(shù)量的茶藝耗材和陶藝耗材.商家告知,因為周年慶,茶藝耗材的單價在標價的基礎(chǔ)上降價2元,陶藝耗材的單價在標價的基礎(chǔ)降價150元,該校決定增加采購數(shù)量,實際購買茶藝耗材和陶藝耗材的數(shù)量在原計劃基礎(chǔ)上分別增加了2.5%和,結(jié)果在結(jié)算時發(fā)現(xiàn),兩種耗材的總價相等,求的值.23.(12分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.24.如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內(nèi)可以看到點E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請你利用以上的數(shù)據(jù)求出DE的長度.(結(jié)果保留根號)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA′=45°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠A′B′C,最后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠B=∠A′B′C.【詳解】解:∵Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.2、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、C【解析】

首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大?。驹斀狻拷猓骸逜D∥BC,∴∠EFB=∠FED=65°,由折疊的性質(zhì)知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質(zhì)與折疊的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.4、A【解析】

根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關(guān)鍵是明確解分式方程的方法.5、A【解析】試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了勾股定理.6、C【解析】分析:直接利用積的乘方運算法則及合并同類項和同底數(shù)冪的乘除運算法則分別分析得出結(jié)果.詳解:A.x2+5x2=,本項錯誤;B.,本項錯誤;C.,正確;D.,本項錯誤.故選C.點睛:本題主要考查了積的乘方運算及合并同類項和同底數(shù)冪的乘除運算,解答本題的關(guān)鍵是正確掌握運算法則.7、B【解析】

作PA⊥x軸于點A,構(gòu)造直角三角形,根據(jù)三角函數(shù)的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故選B.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題關(guān)鍵是熟記三角函數(shù)的定義.8、A【解析】試題分析:根據(jù)y隨x的增大而減小得:k<0,又kb>0,則b<0,故此函數(shù)的圖象經(jīng)過第二、三、四象限,即不經(jīng)過第一象限.故選A.考點:一次函數(shù)圖象與系數(shù)的關(guān)系.9、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.10、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質(zhì)的應(yīng)用,利用勾股定理即可得解,解題的關(guān)鍵是證明△AEG∽△BFE.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質(zhì)得BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD=,BF=BD=,EF==.【詳解】∵∠ABC=∠ADC,∴A,B,C,D四點共圓,∴AC為直徑,∵E為AC的中點,∴E為此圓圓心,∵F為弦BD中點,∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【點睛】本題考查了正方形的性質(zhì)與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與全等三角形的性質(zhì)與應(yīng)用.12、2【解析】試題分析:當(dāng)x+3≥﹣x+1,即:x≥﹣1時,y=x+3,∴當(dāng)x=﹣1時,ymin=2,當(dāng)x+3<﹣x+1,即:x<﹣1時,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,13、(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,則(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案為(y﹣1)1(x﹣1)1.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個式子看做一個整體,利用上述方法因式分解的能力.14、1.【解析】試題分析:∵AD∥BE∥CF,∴,即,∴EF=1.故答案為1.考點:平行線分線段成比例.15、丙【解析】

不低于四星,即四星與五星的和居多為符合題意的餐廳.【詳解】不低于四星,即比較四星和五星的和,丙最多.故答案是:丙.【點睛】考查了可能性的大小和統(tǒng)計表.解題的關(guān)鍵是將問題轉(zhuǎn)化為比較四星和五星的和的多少.16、.【解析】

作輔助線,構(gòu)建直角△DMN,先根據(jù)菱形的性質(zhì)得:∠DAC=60°,AE=AF=2,也知菱形的邊長為4,利用勾股定理求MN和DN的長,從而計算DM的長.【詳解】解:過M作MN⊥AD于N,∵四邊形ABCD是菱形,∴∵EF⊥AC,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt△AMN中,∠AMN=30°,∴∵AD=AB=2AE=4,∴由勾股定理得:故答案為【點睛】本題主要考查了菱形的性質(zhì),等腰三角形的性質(zhì),勾股定理及直角三角形30度角的性質(zhì),熟練掌握直角三角形中30°所對的直角邊是斜邊的一半.三、解答題(共8題,共72分)17、證明見解析【解析】

首先證明△ABC≌△DEF(ASA),進而得出BC=EF,BC∥EF,進而得出答案.【詳解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四邊形BCEF是平行四邊形.【點睛】本題考查了全等三角形的判定與性質(zhì)與平行四邊形的判定,解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)與平行四邊形的判定.18、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【解析】試題分析:(1)設(shè)AB與l交于點O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;(2)先計算出DE=EF+DF=求出DE=5,再由進而由tan∠CBE=求出EC,即可求出CD的長,進而求出航行速度.試題解析:(1)設(shè)AB與l交于點O,在Rt△AOD中,∵∠OAD=60°,AD=2(km),∴OA==4(km),∵AB=10(km),∴OB=AB﹣OA=6(km),在Rt△BOE中,∠OBE=∠OAD=60°,∴BE=OB?cos60°=3(km),答:觀測點B到航線l的距離為3km;(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2,∵∠BEO=90°,BO=6,BE=3,∴OE==3,∴DE=OD+OE=5(km);CE=BE?tan∠CBE=3tan76°,∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),∵5(min)=(h),∴v==12CD=12×3.38≈40.6(km/h),答:該輪船航行的速度約為40.6km/h.【點睛】本題主要考查了方向角問題以及利用銳角三角函數(shù)關(guān)系得出EC,DE,DO的長是解題關(guān)鍵.19、(1)詳見解析;(2);(3)4<OC<1.【解析】

(1)連接OQ,由切線性質(zhì)得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質(zhì)即可得證.(2)由(1)中全等三角形性質(zhì)得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據(jù)余弦定義可得cosB=,由特殊角的三角函數(shù)值可得∠B=30°,∠BOQ=60°,根據(jù)直角三角形的性質(zhì)得OQ=4,結(jié)合題意可得∠QOD度數(shù),由弧長公式即可求得答案.(3)由直角三角形性質(zhì)可得△APO的外心是OA的中點,結(jié)合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設(shè)點M為Rt△APO的外心,則M為OA的中點,

∵OA=1,

∴OM=4,

∴當(dāng)△APO的外心在扇形COD的內(nèi)部時,OM<OC,

∴OC的取值范圍為4<OC<1.【點睛】本題考查了三角形的外接圓與外心、弧長的計算、扇形面積的計算、旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點是解題的關(guān)鍵.20、(1)(2)【解析】

(1)由小亮打第一場,再從其余三人中隨機選取一人打第一場,求出恰好選中大剛的概率即可;(2)畫樹狀圖得出所有等可能的情況數(shù),找出小瑩和小芳伸“手心”或“手背”恰好相同的情況數(shù),即可求出所求的概率.【詳解】解:(1)∵確定小亮打第一場,∴再從小瑩,小芳和大剛中隨機選取一人打第一場,恰好選中大剛的概率為;(2)列表如下:所有等可能的情況有8種,其中小瑩和小芳伸“手心”或“手背”恰好相同且與大剛不同的結(jié)果有2個,則小瑩與小芳打第一場的概率為.【點睛】本題主要考查了列表法與樹狀圖法;概率公式.21、(1),(2)【解析】解:(1)畫樹狀圖得:∵總共有9種等可能情況,每人獲勝的情形都是3種,∴兩人獲勝的概率都是.(2)由(1)可知,一局游戲每人勝、負、和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論