




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025年山西省渾源縣第五中學高考數(shù)學試題查漏補缺試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.2.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.43.復數(shù)的共軛復數(shù)在復平面內(nèi)所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.設i是虛數(shù)單位,若復數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.35.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.6.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁7.若實數(shù)滿足不等式組則的最小值等于()A. B. C. D.8.已知冪函數(shù)的圖象過點,且,,,則,,的大小關系為()A. B. C. D.9.已知實數(shù)滿足則的最大值為()A.2 B. C.1 D.010.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.11.已知,若則實數(shù)的取值范圍是()A. B. C. D.12.我國古代數(shù)學名著《九章算術》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,其中,.且,則集合中所有元素的和為_________.14.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.15.復數(shù)為虛數(shù)單位)的虛部為__________.16.設為數(shù)列的前項和,若,則____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.18.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.19.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當時,證明:.20.(12分)某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:123456758810141517(1)經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關關系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;(2)該商店規(guī)定:若抽中“一等獎”,可領取600元購物券;抽中“二等獎”可領取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等獎”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數(shù)學期望.參考公式:,,,.21.(12分)已知,,且.(1)求的最小值;(2)證明:.22.(10分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.2.C【解析】
將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數(shù)的關系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.本題考查了拋物線的定義,直線與拋物線的位置關系,屬于中檔題.3.D【解析】
由復數(shù)除法運算求出,再寫出其共軛復數(shù),得共軛復數(shù)對應點的坐標.得結(jié)論.【詳解】,,對應點為,在第四象限.故選:D.本題考查復數(shù)的除法運算,考查共軛復數(shù)的概念,考查復數(shù)的幾何意義.掌握復數(shù)的運算法則是解題關鍵.4.A【解析】
根據(jù)復數(shù)除法運算化簡,結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復數(shù)的除法運算化簡可得,因為是純虛數(shù),所以,∴,故選:A.本題考查了復數(shù)的概念和除法運算,屬于基礎題.5.B【解析】
求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數(shù)形結(jié)合思想易得.6.C【解析】
分別假設甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.7.A【解析】
首先畫出可行域,利用目標函數(shù)的幾何意義求的最小值.【詳解】解:作出實數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.本題考查了簡單線性規(guī)劃問題,求目標函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.8.A【解析】
根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎題.9.B【解析】
作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點時,其截距最大,此時最大得,當時,故選:B考查線性規(guī)劃,是基礎題.10.B【解析】
由可得,所以,故選B.11.C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,12.A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設球半徑為,則,所以外接球的表面積,故選:A.本題考查求幾何體的外接球的表面積,關鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.2889【解析】
先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當時,集合中最小數(shù);當時,得到集合中最大的數(shù);故答案為:2889本題考查了數(shù)列與集合綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.14.【解析】
過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.本題主要考查平面向量的線性運算和平面向量的數(shù)量積,由題意作出是解題的關鍵.15.1【解析】試題分析:,即虛部為1,故填:1.考點:復數(shù)的代數(shù)運算16.【解析】
當時,由,解得,當時,,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:本題考查數(shù)列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見證明;(2)【解析】
(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.18.(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關系,結(jié)合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據(jù)表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據(jù)弦長公式,求出,即可求出結(jié)論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設直線的方程為,由,,設,則,則,由橢圓對稱性可設直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據(jù)對稱性不妨設設直線的方程為,斜率不存在,則,,此時.若設的方程為,斜率不存在,則,綜上可知的取值范圍是.本題考查橢圓標準方程、直線與橢圓的位置關系,注意根與系數(shù)關系、弦長公式、函數(shù)最值、橢圓性質(zhì)的合理應用,意在考查邏輯推理、計算求解能力,屬于難題.19.(1)見解析;(2)見解析【解析】
(1)求導得,分類討論和,利用導數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.本題考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構(gòu)造新函數(shù),通過導數(shù)證明不等式,考查轉(zhuǎn)化思想和計算能力.20.(1);(2)見解析【解析】試題分析:(I)由題意可得,,則,,關于的線性回歸方程為.(II)由題意可知二人所獲購物券總金額的可能取值有、、、、元,它們所對應的概率分別為:,,,.據(jù)此可得分布列,計算相應的數(shù)學期望為元.試題解析:(I)依題意:,,,,,,則關于的線性回歸方程為.(II)二人所獲購物券總金額的可能取值有、、、、元,它們所對應的概率分別為:,,,,.所以,總金額的分布列如下表:0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江蘇興化市招聘教師67人筆試參考題庫附答案解析及完整答案詳解1套
- 2025廣東選拔汕頭市市級鄉(xiāng)村振興人才80人筆試備考試題及答案詳解1套
- 2025年6月四川省普通高中學業(yè)水平合格性考試化學模擬六(含答案)
- 2025年北京市西城區(qū)中考二模道德與法治試題(含答案)
- 江蘇省鹽城市五校聯(lián)盟2024-2025學年高一下學期第二次階段性考試(5月)化學試卷(含答案)
- 秋季素顏開秀自然俏麗彩妝造型
- 2025年教育游戲化在考古學教學中的實踐與設計探索
- 數(shù)學 2024-2025學年人教版七年級數(shù)學下冊期末測試題
- 2019-2025年投資項目管理師之投資建設項目決策強化訓練試卷B卷附答案
- 2024-2025學年度四川省德陽市博雅明德高級中學高一第二學期期中檢測歷史試題(含答案)
- 定密責任人培訓
- 2024年溫州大學輔導員考試真題
- 智能電網(wǎng)運營行業(yè)跨境出海戰(zhàn)略研究報告
- 業(yè)主房屋裝修管理中的常見違規(guī)行為處置
- 2024年 全國職業(yè)院校技能大賽(中職組)嬰幼兒保育項目 規(guī)程
- 【北師大版】2024-2025學年七年級數(shù)學下冊教學工作計劃(含進度表)
- DB37-T 5316-2025《外墻外保溫工程質(zhì)量鑒定技術規(guī)程》
- GB/T 26879-2025糧油儲藏平房倉隔熱技術規(guī)范
- 2025年家電清洗中介合同
- 干洗設備購銷合同
- 散劑的工藝流程
評論
0/150
提交評論