




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
青海省西寧二十一中2025年高三4月教學(xué)質(zhì)量檢測試題(二模)數(shù)學(xué)試題(文+理)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.2.已知數(shù)列中,,且當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,.則此數(shù)列的前項的和為()A. B. C. D.3.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.4.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.5.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i6.的展開式中的系數(shù)為()A.5 B.10 C.20 D.307.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]8.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.139.已知關(guān)于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.10.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.011.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.12.集合的子集的個數(shù)是()A.2 B.3 C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的最小值為2,則_________.14.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.15.雙曲線的焦距為__________,漸近線方程為________.16.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.18.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.19.(12分)在直角坐標(biāo)平面中,已知的頂點,,為平面內(nèi)的動點,且.(1)求動點的軌跡的方程;(2)設(shè)過點且不垂直于軸的直線與交于,兩點,點關(guān)于軸的對稱點為,證明:直線過軸上的定點.20.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.21.(12分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.22.(10分)已知數(shù)列,其前項和為,滿足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標(biāo),代入拋物線方程求出參數(shù),可得點坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設(shè)為,如圖,由于,,∴,∴,,∴點坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.2.A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項和公式求出前項的奇數(shù)項的和,利用等比數(shù)列的前項和公式求出前項的偶數(shù)項的和,進而可求解.【詳解】當(dāng)為奇數(shù)時,,則數(shù)列奇數(shù)項是以為首項,以為公差的等差數(shù)列,當(dāng)為偶數(shù)時,,則數(shù)列中每個偶數(shù)項加是以為首項,以為公比的等比數(shù)列.所以.故選:A本題考查了數(shù)列分組求和、等差數(shù)列的前項和公式、等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.3.A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.4.B【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時,檢驗可得,A、C、D都不正確,故選:B.此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項.5.B【解析】
復(fù)數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.6.C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構(gòu)成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.7.B【解析】
先求出,得到,再結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.8.D【解析】
利用等差數(shù)列的通項公式可得,再利用等差數(shù)列的前項和公式即可求解.【詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時,.故選:D本題考查了等差數(shù)列的通項公式、等差數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.9.C【解析】
先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.10.B【解析】
先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.本題考查向量的幾何意義,考查投影公式的應(yīng)用,是基礎(chǔ)題.11.C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.本題利用古代數(shù)學(xué)問題考查圓錐體積計算的實際應(yīng)用,考查學(xué)生的運算求解能力、創(chuàng)新能力.12.D【解析】
先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
首先利用絕對值的意義去掉絕對值符號,之后再結(jié)合后邊的函數(shù)解析式,對照函數(shù)值等于2的時候?qū)?yīng)的自變量的值,從而得到分段函數(shù)的分界點,從而得到相應(yīng)的等量關(guān)系式,求得參數(shù)的值.【詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當(dāng)或時是分界點,結(jié)合函數(shù)的解析式,可以判斷0不可能,所以只能是是分界點,故,解得,故答案是.本題主要考查分段函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.14.【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運算,將問題轉(zhuǎn)化為求球體表面一點到外心距離最大的問題,即可求得結(jié)果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設(shè)線段的中點為,故可得,故當(dāng)取得最大值時,取得最大值.而當(dāng)在同一個大圓上,且,點與線段在球心的異側(cè)時,取得最大值,如圖所示:此時,故答案為:.本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運算以及數(shù)量積運算,屬綜合性困難題.15.6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.16.【解析】
連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時,最小,設(shè)點,則,所以當(dāng)時,,則,當(dāng)點的橫坐標(biāo)時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動點到定點的距離的求法,考查學(xué)生的計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】
(1)根據(jù)已知可得,結(jié)合離心率和關(guān)系,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)斜率不為零,設(shè)的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標(biāo)關(guān)系,求出方程,令求出坐標(biāo),要證、、三點共線,只需證,將分子用縱坐標(biāo)表示,即可證明結(jié)論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設(shè)的方程為,聯(lián)立方程,消去得,由題意,得恒成立,設(shè),,所以,直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子,.所以,,三點共線.解法二:當(dāng)直線的斜率不存在時,由題意,得的方程為,代入橢圓的方程,得,,直線的方程為.則,,,所以,即,,三點共線.當(dāng)直線的斜率存在時,設(shè)的方程為,,,聯(lián)立方程消去,得.由題意,得恒成立,故,.直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子所以.所以,,三點共線.本題考查橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系,要熟練掌握根與系數(shù)關(guān)系,設(shè)而不求方法解決相交弦問題,考查計算求解能力,屬于中檔題.18.(Ⅰ)6(Ⅱ)【解析】
(Ⅰ)化簡得到直線的普通方程化為,,是以點為圓心,為半徑的圓,利用垂徑定理計算得到答案.(Ⅱ)設(shè),則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標(biāo)方程變形為,所以的普通方程分別為,是以點為圓心,為半徑的圓,設(shè)點到直線的距離為,則,所以.(Ⅱ)的標(biāo)準(zhǔn)方程為,所以參數(shù)方程為(為參數(shù)),設(shè),,因為,所以,所以.本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計算能力和應(yīng)用能力.19.(1)();(2)證明見解析.【解析】
(1)設(shè)點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設(shè),由已知,∴,∴(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過軸上的定點.本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點問題,考查學(xué)生的計算能力,屬于中檔題.20.(1).(2)1【解析】
(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2,由AN=λ,設(shè)N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因為PA⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因為∠BAD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標(biāo)系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因為M為PC的中點,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因為AN=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設(shè)平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個法向量.因為直線MN與平面PBC所成角的正弦值為,所以|cos〈,〉|===,解得λ=1∈[
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025遼寧稅務(wù)高等??茖W(xué)校輔導(dǎo)員考試試題及答案
- 2025貴州黔南科技學(xué)院輔導(dǎo)員考試試題及答案
- 2025茅臺學(xué)院輔導(dǎo)員考試試題及答案
- 2025福州黎明職業(yè)技術(shù)學(xué)院輔導(dǎo)員考試試題及答案
- T/ZGZS 0308-2023廢活性炭熱處理再生技術(shù)規(guī)范
- 機器人學(xué)導(dǎo)論 課件 第二章-2.1節(jié)-位姿描述與變換
- 兒童性心理衛(wèi)生
- 房地產(chǎn)管理員考試試卷及答案2025年
- 2025年文化產(chǎn)業(yè)貿(mào)易與經(jīng)濟可持續(xù)性考試試卷及答案
- 2025年外商投資與法律考試試題及答案
- 玻璃體積血的治療
- 2025年貨物購銷合同范本
- 2025年教育管理與政策研究考試試題及答案
- 2025屆北京市北京一零一中學(xué)生物七下期末質(zhì)量檢測試題含解析
- 2025Q1 BrandOS出海品牌社媒影響力榜單-OneSight
- 2025陜西延安通和電業(yè)有限責(zé)任公司供電服務(wù)用工招聘103人筆試參考題庫附帶答案詳解
- 《生成式人工智能職業(yè)技能評估規(guī)范》
- 頒獎禮儀隊培訓(xùn)體系
- 2025年新媒體運營專員面試題及答案
- 心血管-腎臟-代謝綜合征患者的綜合管理中國專家共識2025解讀-1
- 【9化二?!?025年5月安徽省合肥市瑤海區(qū)5月中考二模化學(xué)試卷
評論
0/150
提交評論