福建省長汀、連城一中等六校聯考2024屆高三年級總復習質量檢測試題(二)數學試題_第1頁
福建省長汀、連城一中等六校聯考2024屆高三年級總復習質量檢測試題(二)數學試題_第2頁
福建省長汀、連城一中等六校聯考2024屆高三年級總復習質量檢測試題(二)數學試題_第3頁
福建省長汀、連城一中等六校聯考2024屆高三年級總復習質量檢測試題(二)數學試題_第4頁
福建省長汀、連城一中等六校聯考2024屆高三年級總復習質量檢測試題(二)數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省長汀、連城一中等六校聯考2023屆高三年級總復習質量檢測試題(二)數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.2.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.3.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.294.在中,,分別為,的中點,為上的任一點,實數,滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.5.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.6.用電腦每次可以從區(qū)間內自動生成一個實數,且每次生成每個實數都是等可能性的.若用該電腦連續(xù)生成3個實數,則這3個實數都小于的概率為()A. B. C. D.7.函數的部分圖象大致為()A. B.C. D.8.設函數,則,的大致圖象大致是的()A. B.C. D.9.已知向量,且,則m=()A.?8 B.?6C.6 D.810.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.11.若復數滿足,復數的共軛復數是,則()A.1 B.0 C. D.12.設集合,,若,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在邊長為2的正三角形中,,則的取值范圍為______.14.過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準線交于點M,若,則l的斜率為______.15.已知函數恰好有3個不同的零點,則實數的取值范圍為____16.已知,滿足,則的展開式中的系數為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓經過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.18.(12分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規(guī)定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數.該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數,并得到統計表如下所示.每臺設備一個月中使用的易耗品的件數678型號A30300頻數型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據,該單位在購買設備時應同時購買20件還是21件易耗品?19.(12分)已知函數u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數h(x)的單調區(qū)間;(2)令f(x)=u(x)﹣v(x),若函數f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數的底數)求x1?x2的最大值.20.(12分)在平面直角坐標系xoy中,曲線C的方程為.以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)寫出曲線C的極坐標方程,并求出直線l與曲線C的交點M,N的極坐標;(2)設P是橢圓上的動點,求面積的最大值.21.(12分)設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.22.(10分)如圖,過點且平行與x軸的直線交橢圓于A、B兩點,且.(1)求橢圓的標準方程;(2)過點M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點E、F,求證:是定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由題先畫出基本圖形,結合向量加法和點乘運算化簡可得,結合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應用,數形結合思想,屬于中檔題2.D【解析】

利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據二次函數的性質,求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數的最小值,屬于中檔題目.3.D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D【點睛】考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.4.D【解析】

根據三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.5.D【解析】

先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。6.C【解析】

由幾何概型的概率計算,知每次生成一個實數小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數小于1的概率為.∴這3個實數都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.7.B【解析】

圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況?!驹斀狻?,故奇函數,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。8.B【解析】

采用排除法:通過判斷函數的奇偶性排除選項A;通過判斷特殊點的函數值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數的定義域為,其關于原點對稱,因為,所以函數為奇函數,其圖象關于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數的奇偶性和特殊點函數值符號判斷函數圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數值符號是求解本題的關鍵;屬于中檔題、??碱}型.9.D【解析】

由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.10.B【解析】由題意可得c=,設右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數的點的軌跡,當和大于兩定點間的距離時,軌跡是橢圓,當和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當和小于兩定點間的距離時,軌跡不存在.11.C【解析】

根據復數代數形式的運算法則求出,再根據共軛復數的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數代數形式的運算法則,考查共軛復數的概念,屬于基礎題.12.C【解析】

由得出,利用集合的包含關系可得出實數的取值范圍.【詳解】,且,,.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關系求參數,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

建立直角坐標系,依題意可求得,而,,,故可得,且,由此構造函數,,利用二次函數的性質即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標系,則,,,設,,,,根據,即,,,則,,即,,,則,,所以,,,,,,且,故,設,,易知二次函數的對稱軸為,故函數在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數量積的坐標運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設元、消元,將問題轉化為元二次函數的值域問題.14.【解析】

分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,根據拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,由拋物線的定義知,,,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點睛】此題考查拋物線的定義,根據已知條件做出輔助線利用拋物線定義和幾何關系即可求解,屬于較易題目.15.【解析】

恰好有3個不同的零點恰有三個根,然后轉化成求函數值域即可.【詳解】解:恰好有3個不同的零點恰有三個根,令,,在遞增;,遞減,遞增,時,在有一個零點,在有2個零點;故答案為:.【點睛】已知函數的零點個數求參數的取值范圍是重點也是難點,這類題一般用分離參數的方法,中檔題.16.1【解析】

根據二項式定理求出,然后再由二項式定理或多項式的乘法法則結合組合的知識求得系數.【詳解】由題意,.∴的展開式中的系數為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應用是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.見解析【解析】

(1)設,則點到軸的距離為,因為圓被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標準方程為.(2)設,,因為直線的斜率,所以可設直線的方程為,由及,消去可得,所以,,所以.設線段的中點為,點的縱坐標為,則,,所以直線的斜率為,所以,所以,所以.易得圓心到直線的距離,由圓經過點,可得,所以,整理可得,解得或,所以或,又,所以.18.(1)(2)應該購買21件易耗品【解析】

(1)由統計表中數據可得型號分別為在一個月使用易耗品的件數為6,7,8時的概率,設該單位三臺設備一個月中使用易耗品的件數總數為X,則,利用獨立事件概率公式進而求解即可;(2)由題可得X所有可能的取值為,即可求得對應的概率,再分別討論該單位在購買設備時應同時購買20件易耗品和21件易耗品時總費用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設備一個月使用易耗品的件數為6和7的頻率均為;B型號的設備一個月使用易耗品的件數為6,7,8的頻率分別為;C型號的設備一個月使用易耗品的件數為7和8的頻率分別為;設該單位一個月中三臺設備使用易耗品的件數分別為,則,,,設該單位三臺設備一個月中使用易耗品的件數總數為X,則而,,故,即該單位一個月中三臺設備使用的易耗品總數超過21件的概率為.(2)以題意知,X所有可能的取值為;;;由(1)知,,若該單位在購買設備的同時購買了20件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;;;;;若該單位在肋買設備的同時購買了21件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;;;;,所以該單位在購買設備時應該購買21件易耗品【點睛】本題考查獨立事件的概率,考查離散型隨機變量的分布列和期望,考查數據處理能力.19.(1)單調遞增區(qū)間是(0,e),單調遞減區(qū)間是(e,+∞)(2)【解析】

(1)化簡函數h(x),求導,根據導數和函數的單調性的關系即可求出(2)函數f(x)恰有兩個極值點x1,x2,則f′(x)=lnx﹣mx=0有兩個正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數m化簡整理可得ln(x1x2)=ln?,設t,構造函數g(t)=()lnt,利用導數判斷函數的單調性,求出函數的最大值即可求出x1?x2的最大值.【詳解】(1)令m=2,函數h(x),∴h′(x),令h′(x)=0,解得x=e,∴當x∈(0,e)時,h′(x)>0,當x∈(e,+∞)時,h′(x)<0,∴函數h(x)單調遞增區(qū)間是(0,e),單調遞減區(qū)間是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函數f(x)恰有兩個極值點x1,x2,∴f′(x)=lnx﹣mx=0有兩個不等正根,∴l(xiāng)nx1﹣mx1=0,lnx2﹣mx2=0,兩式相減可得lnx2﹣lnx1=m(x2﹣x1),兩式相加可得m(x2+x1)=lnx2+lnx1,∴∴l(xiāng)n(x1x2)=ln?,設t,∵1e,∴1<t≤e,設g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]單調遞增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]單調遞增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]單調遞增,∴g(t)max=g(e),∴l(xiāng)n(x1x2),∴x1x2故x1?x2的最大值為.【點睛】本題考查了利用導數求函數的最值和最值,考查了函數與方程的思想,轉化與化歸思想,屬于難題20.(1),,;(2).【解析】

(1)利用公式即可求得曲線的極坐標方程;聯立直線和曲線的極坐標方程,即可求得交點坐標;(2)設出點坐標的參數形式,將問題轉化為求三角函數最值的問題即可求得.【詳解】(1)曲線的極坐標方程:聯立,得,又因為都

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論