




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年上外版高三數(shù)學(xué)下冊階段測試試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共9題,共18分)1、在數(shù)列{an}中,若a1=-2,an+1=an+n?2n,則an=()A.(n-2)?2nB.1-C.(1-)D.(1-)2、已知等差數(shù)列{an}的首項為1,公差為2,則a8的值等于()A.13B.14C.15D.163、已知,且,則實數(shù)a=()A.-1B.0C.D.14、已知{an}是等差數(shù)列,a3=5,a9=17,數(shù)列{bn}的前n項和Sn=3n,若am=b1+b4,則正整數(shù)m等于()A.29B.28C.27D.265、已知集合A={cos0,sin270°},B={x|x2-1=0},那么A∩B=()A.{0,-1}B.{1,-1}C.{1}D.{-1}6、計算定積分的值為()A.B.1C.2D.47、已知函數(shù)f(x)=x|1-x|(x∈R),則不等式的解集為()
A.
B.
C.
D.
8、【題文】已知p:x=2,q:0<x<3,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分,又不必要條件9、已知O為坐標(biāo)原點,雙曲線上有一點P,過點P作兩條漸近線的平行線,與兩條漸近線的交點分別為A,B,若平行四邊形PAOB的面積為1,則雙曲線的離心率為()A.B.C.D.評卷人得分二、填空題(共5題,共10分)10、已知sinx=-,x∈[3π,],則x=____.11、命題:F1和F2是橢圓的兩焦點,P為橢圓上的點,過F2作∠F1PF2的外角平分線的垂線,垂足為T,則T到橢圓中心的距離為該橢圓長軸長的一半.經(jīng)證明該命題正確.請你依照該命題研究雙曲線中的情形,寫出類似的正確命題:____.12、已知向量、的夾角為60°,且||=3,||=4,則(+2)?(-)=____.13、定義在上的函數(shù)滿足若當(dāng)時.則當(dāng)時,=.14、復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,那么實數(shù)=____.評卷人得分三、判斷題(共5題,共10分)15、判斷集合A是否為集合B的子集;若是打“√”,若不是打“×”.
(1)A={1,3,5},B={1,2,3,4,5,6}.____;
(2)A={1,3,5},B={1,3,6,9}.____;
(3)A={0},B={x|x2+1=0}.____;
(4)A={a,b,c,d},B={d,b,c,a}.____.16、函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).____(判斷對錯)17、判斷集合A是否為集合B的子集;若是打“√”,若不是打“×”.
(1)A={1,3,5},B={1,2,3,4,5,6}.____;
(2)A={1,3,5},B={1,3,6,9}.____;
(3)A={0},B={x|x2+1=0}.____;
(4)A={a,b,c,d},B={d,b,c,a}.____.18、已知A={x|x=3k-2,k∈Z},則5∈A.____.19、空集沒有子集.____.評卷人得分四、證明題(共3題,共9分)20、如圖所示;已知正四棱錐S-ABCD,E;F分別是側(cè)棱SA、SC的中點.求證:
(1)EF∥平面ABCD;
(2)EF⊥平面SBD.21、(2015春?海南校級期中)正方體ABCD-A′B′C′D′中;求證:
(1)AC⊥平面B′D′DB;
(2)BD與B′C的夾角的余弦值.22、如圖,直四棱柱ABC-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3;E為CD上一點,DE=1,EC=3.
(Ⅰ)證明:BE⊥平面BB1C1C;
(Ⅱ)求直線C1E與平面BB1C1C所成角的正弦值.評卷人得分五、綜合題(共1題,共4分)23、已知三棱錐A-BCD中,DA⊥平面BCD,底面△BCD為等邊三角形,且BC=2,AD=2,則此三棱錐的外接球的表面積為____.參考答案一、選擇題(共9題,共18分)1、A【分析】【分析】利用累加法和錯位相減法求數(shù)列的通項公式.【解析】【解答】解:∵an+1=an+n?2n,∴an+1-an=n?2n;
∴an-a1=an-an-1+an-1-an-2++a2-a1=(n-1)?2n-1++2?22+1?21;
∴2(an+2)=(n-1)?2n+(n-2)?2n-1++2?23+1?22;
∴-(an+2)=-(n-1)?2n+2n-1+2n-2++23+22+2=-(n-1)?2n+=-(n-1)?2n-2+2n;
∴an=(n-1)?2n+2-2n-2=(n-2)?2n;
故選:A.2、C【分析】【分析】利用等差數(shù)列的通項公式即可得出.【解析】【解答】解:設(shè)等差數(shù)列{an}的公差為d;
a8=a1+7d=1+2×7=15.
故選:C.3、D【分析】【分析】根據(jù)函數(shù)的解析式求出f(2)的值,再由條件列出方程求出a的值.【解析】【解答】解:由題意知,;
所以f(2)=22-2=1,則=;
因為,所以f()=a-;
解得a=1;
故選:D.4、A【分析】【分析】利用{an}是等差數(shù)列,a3=5,a9=17,求出a0=1,d=2,求出b1+b4=57,即可求出m.【解析】【解答】解:假設(shè)an=a0+(n-1)d,可知a9-a3=6d=12;則d=2;
而a3=5,則a0=1.所以b1=S1=3,b4=S4-S3=54,則b1+b4=57;
因此am=a0+(m-1)d=1+2(m-1)=57=b1+b4;從而可得m=29.
故選:A.5、B【分析】【分析】利用交集定義求解.【解析】【解答】解:∵集合A={cos0;sin270°}={1,-1};
B={x|x2-1=0}={-1;1};
∴A∩B={-1;1}.
故選:B.6、C【分析】【分析】根據(jù)3x2+1的原函數(shù)是x3+x,從而求出被積函數(shù)3x2+1的原函數(shù),最后根據(jù)定積分的定義解之即可.【解析】【解答】解:=(x3+x)=2.
故選C.7、D【分析】
∵f(x)=x|1-x|=
∴當(dāng)x<1時,f(x)>?x-x2>?(2x-1)2<0;
∴x∈?;
當(dāng)x≥1時,f(x)>?x2-x>?(2x-1)2>2;
∴x≥或x<(舍去).
∴則不等式的解集為[+∞).
故選D.
【解析】【答案】可通過對x分x≥1與x<1分類討論;去掉絕對值符號,再解不等式即可.
8、A【分析】【解析】
試題分析:因為命題p:x=2;顯然滿足0<x<3,即p是q的充分條件;反過來,若0<x<3,則不能推出x=2,即q不能推出p.故p是q的成分不必要條件.
考點:充分條件與必要條件.【解析】【答案】A.9、C【分析】【解答】解:由雙曲線方程可得漸近線方程bx±y=0;
設(shè)P(m,n)是雙曲線上任一點,設(shè)過P平行于bx+y=0的直線為l;
則l的方程為:bx+y﹣bm﹣n=0,l與漸近線bx﹣y=0交點為A;
則A(),|OA|=||
P點到OA的距離是:d=
∵|OA|?d=1,∴||?=1;
∴b=2,∴c=
∴e=
故選:C.
【分析】求得雙曲線的漸近線方程,設(shè)P(m,n)是雙曲線上任一點,設(shè)過P平行于bx+y=0的直線為l,求得l的方程,聯(lián)立另一條漸近線可得交點A,|OA|,求得P到OA的距離,由平行四邊形的面積公式,化簡整理,解方程可得b,求得c,進而得到所求雙曲線的離心率.二、填空題(共5題,共10分)10、略
【分析】【分析】由條件利用反正弦函數(shù)的定義和性質(zhì),求得x的值.【解析】【解答】解:∵sinx=-,x∈[3π,],則x=2π+π+=3π+=;
故答案為:.11、略
【分析】【分析】根據(jù)類比推理的定義,結(jié)合橢圓的定義和性質(zhì)可得得到類比命題.【解析】【解答】解:根據(jù)橢圓和雙曲線性質(zhì)的和定義,利用橢圓的性質(zhì),可以類比是雙曲線的命題為:F1和F2為雙曲線的兩焦點,P為雙曲線上的點,過F2作∠F1PF2的平分線的垂線;垂足為T則T到雙曲線中心的距離為該雙曲線的實軸長的一半.
故答案:F1和F2為雙曲線的兩焦點,P為雙曲線上的點,過F2作∠F1PF2的平分線的垂線,垂足為T則T到雙曲線中心的距離為該雙曲線的實軸長的一半.12、略
【分析】【分析】先求出,再利用向量的數(shù)量積運算即可得出.【解析】【解答】解:∵向量、的夾角為60°,且||=3,||=4,∴==6.
∴(+2)?(-)==32-2×42+6=-17.
故答案為-17.13、略
【分析】試題分析:當(dāng)時,則考點:分段函數(shù)解析式求法.【解析】【答案】14、略
【分析】【解析】
【解析】【答案】三、判斷題(共5題,共10分)15、√【分析】【分析】根據(jù)子集的概念,判斷A的所有元素是否為B的元素,是便說明A是B的子集,否則A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;
(2)5∈A;而5?B,∴A不是B的子集;
(3)B=?;∴A不是B的子集;
(4)A;B兩集合的元素相同,A=B,∴A是B的子集.
故答案為:√,×,×,√.16、×【分析】【分析】根據(jù)奇函數(shù)的定義進行判斷即可得到答案.【解析】【解答】解:∵x∈[0;2π],定義域不關(guān)于原點對稱;
故函數(shù)y=sinx不是奇函數(shù);
故答案為:×17、√【分析】【分析】根據(jù)子集的概念,判斷A的所有元素是否為B的元素,是便說明A是B的子集,否則A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;
(2)5∈A;而5?B,∴A不是B的子集;
(3)B=?;∴A不是B的子集;
(4)A;B兩集合的元素相同,A=B,∴A是B的子集.
故答案為:√,×,×,√.18、×【分析】【分析】判斷5與集合A的關(guān)系即可.【解析】【解答】解:由3k-2=5得,3k=7,解得k=;
所以5?Z;所以5∈A錯誤.
故答案為:×19、×【分析】【分析】根據(jù)空集的性質(zhì),分析可得空集是其本身的子集,即可得答案.【解析】【解答】解:根據(jù)題意;空集是任何集合的子集,是任何非空集合的真子集;
即空集是其本身的子集;則原命題錯誤;
故答案為:×.四、證明題(共3題,共9分)20、略
【分析】【分析】(1)連接BD;運用中位線定理和線面平行的判定定理,即可得證;
(2)由正四棱錐S-ABCD中,AC⊥平面SBD,結(jié)合FE∥AC,即可判定EF⊥平面SBD.【解析】【解答】證明:(1)連接AC;∵由E;F分別是SA、SC的中點;
∴FE∥AC;
∵EF?平面ABCD;AC?平面ABCD;
∴則有EF∥平面ABCD;
(2)∵正四棱錐S-ABCD中;頂點S在底面的射影為底面中心;
∴AC⊥平面SBD.
∵由(1)可得FE∥AC;
∴EF⊥平面SBD.21、略
【分析】【分析】(1)證明AC⊥BD;AC⊥BB′,通過直線與平面垂直的判定定理即可證明.
(2)由BD∥B′D′,可得∠CB′D′即為BD與B′C的夾角,設(shè)正方體的邊長為1,則可求B′D′=B′C=CD′=,即∠CB′D′=60°,從而可求BD與B′C的夾角的余弦值.【解析】【解答】證明:(1)正方體ABCD-A′B′C′D′;B′B⊥平面ABCD,AC?平面ABCD;
∴AC⊥BB′;
又∵AC;BD是正方形的對角線;∴AC⊥BD,又BD∩B′B=B;
∴AC⊥平面BB′D′D;
(2)∵BD∥B′D′;
∴可得∠CB′D′即為BD與B′C的夾角;
設(shè)正方體的邊長為1,則可求:B′D′=B′C=CD′=;即△B′CD′為等邊三角形.
∴∠CB′D′=60°;
∴cos∠CB′D′=,即BD與B′C的夾角的余弦值為.22、略
【分析】【分析】(Ⅰ)過點B作BF⊥CD,垂足為F,可證在△BCE中,BE⊥BC,由BB1⊥平面ABCD,而BE?平面ABCD,可得BB1⊥B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 實驗動物手術(shù)室租賃合同(含實驗數(shù)據(jù)共享)
- 建筑工程安全質(zhì)量補充協(xié)議
- 電力設(shè)備省級總代理采購供應(yīng)合同
- DB42-T 2038.1-2023 雪茄煙葉生產(chǎn)技術(shù)規(guī)程 第1部分:立體育苗
- 小學(xué)三年級數(shù)學(xué)教學(xué)工作總結(jié)模版
- 2023年人教版四年級語文上冊期中檢測卷(附答案)
- 第二單元家庭與婚姻單元測試-2024-2025學(xué)年高中政治統(tǒng)編版選擇性必修二法律與生活(含解析)
- 北京版英語二年級上冊《Unit 4 There are many animals Lesson 13》公開課
- 江蘇省無錫錫東片重點達標(biāo)名校2025年第一次高中畢業(yè)生復(fù)習(xí)統(tǒng)一檢測試題數(shù)學(xué)試題含解析
- 山南地區(qū)貢嘎縣2025屆小升初模擬數(shù)學(xué)測試卷含解析
- 衛(wèi)生統(tǒng)計學(xué)-回歸與相關(guān)
- 德國政治制度簡介課件
- 古詩《江上漁者》講課稿課件
- 高標(biāo)準(zhǔn)基本農(nóng)田建設(shè)項目監(jiān)理月報1期
- 水質(zhì)自動在線監(jiān)測系統(tǒng)技術(shù)協(xié)議1010審計
- DBJ04∕T 258-2016 建筑地基基礎(chǔ)勘察設(shè)計規(guī)范
- 七年級地理下雙向細目表
- 企業(yè)風(fēng)險評估報告模板
- 網(wǎng)吧員工勞動合同書
- Revit基礎(chǔ)入門課件
- 小升初英語奧數(shù)題
評論
0/150
提交評論