第03講函數(shù)的奇偶性、對稱性與周期性(精講+精練)目錄第一部分:知識點精準記憶第二部分:課前自我評估測試第三部分:典型例題剖析高頻考點一:函數(shù)奇偶性①判斷函數(shù)奇偶性②根據(jù)函數(shù)奇偶性求解析式③函數(shù)奇偶性的應用④由函數(shù)奇偶性求參數(shù)⑤奇偶性+單調性解不等式高頻考點二:函數(shù)周期性及其應用①由函數(shù)周期性求函數(shù)值②由函數(shù)周期性求解析式高頻考點三:函數(shù)的對稱性①由函數(shù)對稱性求解析式②由函數(shù)對稱性求函數(shù)值或參數(shù)③對稱性+奇偶性+周期性的綜合應用第四部分:高考真題感悟第五部分:第03講函數(shù)的奇偶性、對稱性與周期性(精練)第一部分:知識點精準記憶第一部分:知識點精準記憶1、函數(shù)的奇偶性(1)函數(shù)奇偶性定義奇偶性定義圖象特點偶函數(shù)如果對于函數(shù)SKIPIF1<0的定義域內任意一個SKIPIF1<0,都有SKIPIF1<0,那么函數(shù)SKIPIF1<0是偶函數(shù)圖象關于SKIPIF1<0軸對稱奇函數(shù)如果對于函數(shù)SKIPIF1<0的定義域內任意一個SKIPIF1<0,都有SKIPIF1<0,那么函數(shù)SKIPIF1<0是奇函數(shù)圖象關于原點對稱注意:由函數(shù)奇偶性的定義可知,函數(shù)具有奇偶性的一個前提條件是:對于定義域內的任意一個x,SKIPIF1<0也在定義域內(即定義域關于原點對稱).(2)常用結論與技巧:①對數(shù)型復合函數(shù)判斷奇偶性常用SKIPIF1<0或SKIPIF1<0來判斷奇偶性.②SKIPIF1<0,SKIPIF1<0在它們的公共定義域上有下面的結論:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)奇函數(shù)不能確定不能確定奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)不能確定不能確定奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)偶函數(shù)③若SKIPIF1<0是定義在區(qū)間SKIPIF1<0上奇函數(shù),且SKIPIF1<0,則SKIPIF1<0(注意:反之不成立)2、函數(shù)對稱性(異號對稱)(1)軸對稱:若函數(shù)SKIPIF1<0關于直線SKIPIF1<0對稱,則①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0(2)點對稱:若函數(shù)SKIPIF1<0關于直線SKIPIF1<0對稱,則①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0(2)點對稱:若函數(shù)SKIPIF1<0關于直線SKIPIF1<0對稱,則①SKIPIF1<0②SKIPIF1<0③SKIPIF1<03、函數(shù)周期性(同號周期)(1)周期函數(shù)定義對于函數(shù)SKIPIF1<0,如果存在一個非零常數(shù)SKIPIF1<0,使得當SKIPIF1<0取定義域內的任何值時,都有SKIPIF1<0,那么就稱函數(shù)SKIPIF1<0為周期函數(shù),稱SKIPIF1<0為這個函數(shù)的周期,則SKIPIF1<0(SKIPIF1<0)也是這個函數(shù)的周期.(2)最小正周期如果在周期函數(shù)SKIPIF1<0的所有周期中存在一個最小的正數(shù),那么這個最小的正數(shù)就叫做SKIPIF1<0的最小正周期(若不特別說明,SKIPIF1<0一般都是指最小正周期).注意:并不是所有周期函數(shù)都有最小正周期.(3)函數(shù)周期性的常用結論與技巧設函數(shù)SKIPIF1<0,SKIPIF1<0.①若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;②若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;③若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;④若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;⑤SKIPIF1<0,則函數(shù)的周期SKIPIF1<0第二部分:課前自我評估測試第二部分:課前自我評估測試1.(2022·北京·高三學業(yè)考試)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0是奇函數(shù) B.SKIPIF1<0是偶函數(shù)C.SKIPIF1<0既是奇函數(shù)又是偶函數(shù) D.SKIPIF1<0既不是奇函數(shù)也不是偶函數(shù)2.(2022·浙江臺州·高一期末)設f(x)是定義在R上的奇函數(shù),若SKIPIF1<0,則f(1)=(
)A.-1 B.0 C.1 D.23.(2022·全國·高三專題練習)若SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,則SKIPIF1<0的值為(
)A.1 B.2 C.0 D.SKIPIF1<04.(2021·全國·高一課時練習)若SKIPIF1<0的偶函數(shù),其定義域為SKIPIF1<0,且在SKIPIF1<0上是減函數(shù),則SKIPIF1<0與SKIPIF1<0得大小關系是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.不能確定5.(2021·河南·新蔡縣第一高級中學高三階段練習(文))已知函數(shù)f(x)為定義在R上的奇函數(shù),且SKIPIF1<0,則SKIPIF1<0(
)A.2019 B.3 C.-3 D.0第三部分:典型例題剖析第三部分:典型例題剖析高頻考點一:函數(shù)奇偶性①判斷函數(shù)奇偶性1.(2021·廣東·汕頭市潮陽區(qū)河溪中學高二期中)下列函數(shù)在其定義域內為奇函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·江蘇·高一單元測試)函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),在公共定義域內,下列結論一定正確的是(
)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0為偶函數(shù)C.SKIPIF1<0為奇函數(shù) D.SKIPIF1<0為偶函數(shù)3.(2021·廣東·龍門縣高級中學高一期中)給定函數(shù):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中奇函數(shù)是(
).A.①② B.③④ C.②④ D.①③②根據(jù)函數(shù)奇偶性求解析式1.(2021·四川省南充高級中學高一階段練習)若函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),則該函數(shù)的最大值為(
)A.10 B.5 C.3 D.22.(2021·寧夏·銀川一中高一期中)已知SKIPIF1<0是定義域為R的偶函數(shù),當SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0時,SKIPIF1<0=___________.3.(2021·江蘇·南京外國語學校高一期中)設m為實數(shù),若函數(shù)SKIPIF1<0(SKIPIF1<0)是偶函數(shù),則m的值為__________.4.(2021·全國·高一課前預習)已知SKIPIF1<0是SKIPIF1<0上的奇函數(shù),且當SKIPIF1<0時,SKIPIF1<0,求SKIPIF1<0的解析式.③函數(shù)奇偶性的應用1.(2022·湖南·長沙市南雅中學高三階段練習)設f(x)是周期為2的奇函數(shù),當0≤x≤1時,f(x)=2x,則SKIPIF1<0=________.2.(2022·廣東茂名·高一期末)若函數(shù)SKIPIF1<0是奇函數(shù),則SKIPIF1<0__________.3.(2022·四川涼山·高一期末)已知SKIPIF1<0,SKIPIF1<0分別是定義在R上的偶函數(shù)和奇函數(shù),且SKIPIF1<0,則SKIPIF1<0______.4.(2022·湖南·一模)已知SKIPIF1<0是奇函數(shù),且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0___.④由函數(shù)奇偶性求參數(shù)1.(2022·內蒙古包頭·高三期末(文))已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0______.2.(2022·海南·模擬預測)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),則SKIPIF1<0______.3.(2022·湖北·石首市第一中學高一階段練習)已知函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0_______.4.(2022·黑龍江·佳木斯一中高一期末)SKIPIF1<0為偶函數(shù),則SKIPIF1<0___________.⑤奇偶性+單調性解不等式1.(2022·廣西南寧·高一期末)若函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),在SKIPIF1<0上單調遞減,且SKIPIF1<0,則使得SKIPIF1<0的SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<02.(2022·云南麗江·高一期末)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·四川綿陽·高一期末)若SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·廣東汕尾·高一期末)函數(shù)SKIPIF1<0為奇函數(shù),且對任意互不相等的SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0成立,且SKIPIF1<0,則SKIPIF1<0的解集為______.5.(2022·甘肅省武威第一中學高一開學考試)設偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞增,則滿足SKIPIF1<0的x的取值范圍是___________.6.(2022·湖北大學附屬中學高一階段練習)SKIPIF1<0是奇函數(shù)(1)求SKIPIF1<0(2)判斷并證明SKIPIF1<0的單調性(3)若SKIPIF1<0,求SKIPIF1<0的取值范圍高頻考點二:函數(shù)周期性及其應用①由函數(shù)周期性求函數(shù)值1.(2021·北京·人大附中高一期中)已知定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·甘肅·一模(文))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.8 B.2 C.-2 D.-83.(2021·廣東汕頭·高二期末)已知函數(shù)SKIPIF1<0是奇函數(shù),且滿足SKIPIF1<0,若當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0________.②由函數(shù)周期性求解析式1.(2021·北京市十一學校高一期中)若定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0時SKIPIF1<0,則:(1)SKIPIF1<0__________;(2)當SKIPIF1<0時,SKIPIF1<0_________.2.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0是定義域為R的偶函數(shù),且周期為2,當SKIPIF1<0時,SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0________.3.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0對任意實數(shù)SKIPIF1<0都有SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0的值;(2)寫出SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上的解析式;(3)當SKIPIF1<0,SKIPIF1<0時,求不等式SKIPIF1<0的解集.4.(2021·山東師范大學附中高三期中)設SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且對任意實數(shù)SKIPIF1<0,恒有SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0.(1)當SKIPIF1<0時,求SKIPIF1<0的解析式;(2)計算SKIPIF1<0.高頻考點三:函數(shù)的對稱性①由函數(shù)對稱性求解析式1.(2022·廣東·高三開學考試)下列函數(shù)與SKIPIF1<0關于SKIPIF1<0對稱的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·浙江·高三專題練習)已知函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象關于SKIPIF1<0軸對稱,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0滿足:①SKIPIF1<0;②在SKIPIF1<0上是減函數(shù);③SKIPIF1<0.請寫出一個滿足以上條件的SKIPIF1<0___________.4.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0______.③由函數(shù)對稱性求函數(shù)值或參數(shù)1.(2021·江西·景德鎮(zhèn)一中高二期末(文))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.4 D.SKIPIF1<02.(2021·全國·高一專題練習)已知函數(shù)SKIPIF1<0,記SKIPIF1<0SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·四川雅安·高一期末)若SKIPIF1<0,則SKIPIF1<0___________.4.(2021·上?!じ咭粚n}練習)SKIPIF1<0的對稱中心為SKIPIF1<0,則a的值為___________.5.(2021·全國·高一專題練習)已知函數(shù)f(x)=SKIPIF1<0.(1)求f(2)與fSKIPIF1<0,f(3)與fSKIPIF1<0;(2)由(1)中求得的結果,你能發(fā)現(xiàn)f(x)與fSKIPIF1<0有什么關系?證明你的發(fā)現(xiàn);(3)求f(2)+fSKIPIF1<0+f(3)+fSKIPIF1<0+SKIPIF1<0+f(2019)+fSKIPIF1<0的值.④對稱性+奇偶性+周期性的綜合應用1.(2022·四川涼山·二模(文))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,滿足SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·重慶·西南大學附中模擬預測)函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則關于x的方程SKIPIF1<0在SKIPIF1<0上的解的個數(shù)是(
)A.1010 B.1011 C.1012 D.10133.(多選)(2022·甘肅·蘭州一中高一期末)定義在R上的偶函數(shù)f(x)滿足SKIPIF1<0,且在SKIPIF1<0上是增函數(shù),則下列關于f(x)的結論中正確的有(
)A.f(x)的圖象關于直線SKIPIF1<0對稱 B.f(x)在[0,1]上是增函數(shù)C.f(x)在[1,2]上是減函數(shù) D.SKIPIF1<04.(多選)(2022·全國·高三專題練習)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0的圖象關于SKIPIF1<0對稱C.SKIPIF1<0為偶函數(shù) D.SKIPIF1<0是周期為4的函數(shù)5.(2022·重慶九龍坡·高一期末)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內的零點的個數(shù)為__________.第四部分:高考真題感悟第四部分:高考真題感悟1.(2021·全國·高考真題(文))設SKIPIF1<0是定義域為R的奇函數(shù),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·全國·高考真題)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·江蘇·高考真題)已知奇函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的單調函數(shù),若正實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.44.(2021·全國·高考真題(理))設函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021·湖南·高考真題)已知函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0____________6.(2021·全國·高考真題)已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0______.第五部分:第03講函數(shù)的奇偶性、對稱性與周期性(精練)第五部分:第03講函數(shù)的奇偶性、對稱性與周期性(精練)1.(2022·山西·懷仁市第一中學校二模(理))已知函數(shù)SKIPIF1<0為R上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0等于(
)A.-3 B.-1 C.1 D.32.(2022·山西呂梁·一模(文))已知函數(shù)SKIPIF1<0為定義在R上的奇函數(shù),且當SKIPIF1<0時,SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·江蘇·南京師大附中高一期末)定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞增,若SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國·高三專題練習(文))已知定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0,對SKIPIF1<0,有SKIPIF1<0成立,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0的圖象關于原點對稱,且滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·陜西咸陽·二模(理))已知函數(shù)SKIPIF1<0為定義在R上的奇函數(shù),且SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.2021 B.1 C.SKIPIF1<0 D.07.(2022·山西·懷仁市第一中學校二模(文))已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0為偶函數(shù),且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.4 B.3 C.2 D.18.(2022·廣東·執(zhí)信中學高一階段練習)已知在R上的函數(shù)SKIPIF1<0滿足對于任意實數(shù)SKIPIF1<0都有SKIPIF1<0,SKIPIF1<0,且在區(qū)間SKIPIF1<0上只有SKIPIF1<0和SKIPIF1<0兩個零點,則SKIPIF1<0在區(qū)間SKIPIF1<0上根的個數(shù)為()A.404 B.405 C.406 D.203二、填空題9.(2022·上海市復興高級中學高一階段練習)已知SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是______10.(2022·江西·新余市第一中學高一開學考試)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0________.11.(2022·重慶巴蜀中學高一期末)已知定義在區(qū)間
評論
0/150
提交評論