




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第02講導數(shù)與函數(shù)的單調(diào)性(精講+精練)目錄第一部分:知識點精準記憶第二部分:課前自我評估測試第三部分:典型例題剖析高頻考點一:利用導數(shù)求函數(shù)的單調(diào)區(qū)間(不含參)高頻考點二:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)高頻考點三:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間高頻考點四:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)高頻考點五:函數(shù)單調(diào)性的應(yīng)用①導函數(shù)與原函數(shù)圖象的單調(diào)性②比較大?、蹣?gòu)造函數(shù)解不等式高頻考點六:含參問題討論單調(diào)性①導函數(shù)有效部分是一次型(或可化為一次型)②導函數(shù)有效部分是二次型(或可化為二次型)且可因式分解型③導函數(shù)有效部分是二次型(或可化為二次型)且不可因式分解型第四部分:高考真題感悟第五部分:第02講導數(shù)與函數(shù)的單調(diào)性(精練)第一部分:知識點精準記憶第一部分:知識點精準記憶1、函數(shù)的單調(diào)性與導數(shù)的關(guān)系(導函數(shù)看正負,原函數(shù)看增減)條件恒有結(jié)論函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上可導SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減SKIPIF1<0SKIPIF1<0在SKIPIF1<0內(nèi)是常數(shù)函數(shù)2、求已知函數(shù)(不含參)的單調(diào)區(qū)間①求SKIPIF1<0的定義域②求SKIPIF1<0③令SKIPIF1<0,解不等式,求單調(diào)增區(qū)間④令SKIPIF1<0,解不等式,求單調(diào)減區(qū)間注:求單調(diào)區(qū)間時,令SKIPIF1<0(或SKIPIF1<0)不跟等號.3、由函數(shù)SKIPIF1<0的單調(diào)性求參數(shù)的取值范圍的方法(1)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)①已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.②已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.注:已知單調(diào)性,等價條件中的不等式含等號.(2)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間①已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間SKIPIF1<0令SKIPIF1<0,解不等式,求單調(diào)增區(qū)間SKIPIF1<0,則SKIPIF1<0②已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)減區(qū)間SKIPIF1<0令SKIPIF1<0,解不等式,求單調(diào)減區(qū)間SKIPIF1<0,則SKIPIF1<0(3)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)SKIPIF1<0SKIPIF1<0,使得SKIPIF1<04、含參問題討論單調(diào)性第一步:求SKIPIF1<0的定義域第二步:求SKIPIF1<0(導函數(shù)中有分母通分)第三步:確定導函數(shù)有效部分,記為SKIPIF1<0對于SKIPIF1<0進行求導得到SKIPIF1<0,對SKIPIF1<0初步處理(如通分),提出SKIPIF1<0的恒正部分,將該部分省略,留下的部分則為SKIPIF1<0的有效部分(如:SKIPIF1<0,則記SKIPIF1<0為SKIPIF1<0的有效部分).接下來就只需考慮導函數(shù)有效部分,只有該部分決定SKIPIF1<0的正負.第四步:確定導函數(shù)有效部分SKIPIF1<0的類型:①SKIPIF1<0為一次型(或可化為一次型)②SKIPIF1<0為二次型(或可化為二次型)第五步:通過分析導函數(shù)有效部分,討論SKIPIF1<0的單調(diào)性第二部分:課前自我評估測試第二部分:課前自我評估測試一、判斷題1.(2021·全國·高二課前預習)函數(shù)f(x)在定義域上都有f′(x)<0,則函數(shù)f(x)在定義域上單調(diào)遞減.()【答案】錯誤2.(2021·全國·高二課前預習)函數(shù)f(x)在某區(qū)間內(nèi)單調(diào)遞增,則一定有f′(x)>0.()【答案】錯誤3.(2021·全國·高二課前預習)函數(shù)y=x3+x的單調(diào)遞增區(qū)間為(-∞,+∞).()【答案】正確二、單選題1.(2022·廣東·佛山市南海區(qū)桂城中學高二階段練習)函數(shù)SKIPIF1<0的圖象如圖所示,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0的符號不確定【答案】B如圖所示,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0故選:B2.(2022·河北·武安市第三中學高二階段練習)函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解:函數(shù)的定義域是SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.故選:D.3.(2022·江西南昌·高二期末(理))若函數(shù)SKIPIF1<0,則SKIPIF1<0的單調(diào)增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:因為函數(shù)SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,故選:C.4.(2022·湖北·華中師大一附中高一期末)“函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù)”是:“實數(shù)SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】BSKIPIF1<0在SKIPIF1<0上恒成立,可得SKIPIF1<0,SKIPIF1<0,所以“函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù)”是:“實數(shù)SKIPIF1<0”的必要不充分條件.故選:B.第三部分:典型例題剖析第三部分:典型例題剖析高頻考點一:利用導數(shù)求函數(shù)的單調(diào)區(qū)間(不含參)1.(2022·廣東·深圳市南山區(qū)華僑城中學高二階段練習)函數(shù)SKIPIF1<0的單調(diào)減區(qū)間是(
)A.(-∞,SKIPIF1<0] B.(0,SKIPIF1<0) C.SKIPIF1<0和(0,SKIPIF1<0) D.SKIPIF1<0【答案】B函數(shù)定義域是SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0.即減區(qū)間是SKIPIF1<0.故選:B.2.(2022·福建·福鼎市第一中學高二階段練習)函數(shù)SKIPIF1<0的減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C∵SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,∴函數(shù)的減區(qū)間是SKIPIF1<0.故選:C.3.(2022·重慶八中高三階段練習)函數(shù)SKIPIF1<0的遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】DSKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上的單調(diào)遞增區(qū)間為SKIPIF1<0.故選:D.4.(2022·全國·高二課時練習)函數(shù)SKIPIF1<0的減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C由題意,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0的減區(qū)間是SKIPIF1<0.故選:C5.(2022·全國·高三專題練習)函數(shù)SKIPIF1<0的遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的遞增區(qū)間為SKIPIF1<0.故選:A.高頻考點二:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)1.(2022·黑龍江·鐵人中學高二開學考試)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0單調(diào)遞增,a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B因為SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0SKIPIF1<0在區(qū)間SKIPIF1<0恒成立,即SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B.2.(2022·全國·高三專題練習)若函數(shù)f(x)=x3+bx2+cx+d的單調(diào)遞減區(qū)間為(-1,3),則b+c=(
)A.-12 B.-10 C.8 D.10【答案】ASKIPIF1<0=3x2+2bx+c,由題意知,-1<x<3是不等式3x2+2bx+c<0的解,∴-1,3是SKIPIF1<0=0的兩個根,∴b=-3,c=-9,∴b+c=-12.故選:A.3.(2022·廣西欽州·高二期末(文))函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增的一個必要不充分條件是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題得SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增,SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立.SKIPIF1<0,而SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,SKIPIF1<0.選項中只有SKIPIF1<0是SKIPIF1<0的必要不充分條件.選項AC是SKIPIF1<0的充分不必要條件,選項B是充要條件.故選:D4.(2022·全國·高二課時練習)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由SKIPIF1<0得SKIPIF1<0,由于函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即得SKIPIF1<0在SKIPIF1<0恒成立,所以SKIPIF1<0,故選:D.5.(2022·全國·高二課時練習)若函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A∵SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,故選:A.【點睛】本題主要考查“分離參數(shù)”在解題中的應(yīng)用、函數(shù)的定義域及利用單調(diào)性求參數(shù)的范圍,屬于中檔題.利用單調(diào)性求參數(shù)的范圍的常見方法:①視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參數(shù)需注意若函數(shù)在區(qū)間SKIPIF1<0上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;②利用導數(shù)轉(zhuǎn)化為不等式SKIPIF1<0或SKIPIF1<0恒成立問題求參數(shù)范圍.6.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A因為SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的遞增區(qū)間為SKIPIF1<0.由于SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.因此,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.高頻考點三:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間1.(2022·河北·武安市第三中學高二階段練習)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在單調(diào)遞減區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ASKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,不符合題意;當SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A.2.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)遞增區(qū)間,則實數(shù)b的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A∵函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間,∴函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在子區(qū)間使得不等式SKIPIF1<0成立,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0;故選:A.3.(2022·重慶市萬州第二高級中學高二階段練習)已知函數(shù)SKIPIF1<0存在三個單調(diào)區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C由題意,函數(shù)SKIPIF1<0,可得SKIPIF1<0,因為函數(shù)SKIPIF1<0存在三個單調(diào)區(qū)間,可得SKIPIF1<0有兩個不相等的實數(shù)根,則滿足SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.4.(2022·全國·高二)若函數(shù)SKIPIF1<0存在遞減區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B由題設(shè),SKIPIF1<0,由SKIPIF1<0存在遞減區(qū)間,即存在SKIPIF1<0使SKIPIF1<0,∴SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0.故選:B5.(2021·內(nèi)蒙古·赤峰二中高二期末(理))若函數(shù)SKIPIF1<0存在增區(qū)間,則實數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C若函數(shù)SKIPIF1<0不存在增區(qū)間,則函數(shù)SKIPIF1<0單調(diào)遞減,此時SKIPIF1<0在區(qū)間SKIPIF1<0恒成立,可得SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,故函數(shù)存在增區(qū)間時實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選C.高頻考點四:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)1.(2022·重慶市青木關(guān)中學校高二階段練習)已知函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)不是單調(diào)函數(shù),則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D由于函數(shù)SKIPIF1<0在SKIPIF1<0不是單調(diào)函數(shù),則SKIPIF1<0在SKIPIF1<0內(nèi)存在極值點,所以SKIPIF1<0在SKIPIF1<0內(nèi)有解,即SKIPIF1<0在SKIPIF1<0內(nèi)有解,SKIPIF1<0.故選:D2.(2022·河南·高二階段練習(理))若函數(shù)SKIPIF1<0在定義域內(nèi)的一個子區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),則實數(shù)k的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題意得,函數(shù)定義域為SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,解得在定義域內(nèi)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,函數(shù)在區(qū)間SKIPIF1<0內(nèi)不單調(diào),所以SKIPIF1<0,解得SKIPIF1<0,又因為SKIPIF1<0,得SKIPIF1<0,綜上SKIPIF1<0,故選:D.3.(2022·安徽·合肥一中高二階段練習)若函數(shù)SKIPIF1<0在其定義域上不單調(diào),則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A由題意,函數(shù)SKIPIF1<0,可得SKIPIF1<0,因為函數(shù)SKIPIF1<0在其定義域上不單調(diào),即SKIPIF1<0有變號零點,結(jié)合二次函數(shù)的性質(zhì),可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A.4.(2022·浙江·高二階段練習)函數(shù)SKIPIF1<0在區(qū)間[-1,2]上不單調(diào),則實數(shù)a的取值范圍是(
)A.(-∞,-3] B.(-3,1)C.[1,+∞) D.(-∞,-3]∪[1,+∞)【答案】BSKIPIF1<0SKIPIF1<0,如果函數(shù)SKIPIF1<0在區(qū)間[-1,2]上單調(diào),那么a-1≥0或SKIPIF1<0,即SKIPIF1<0,解得a≥1或a≤-3,所以當函數(shù)SKIPIF1<0在區(qū)間[-1,2]上不單調(diào)時,SKIPIF1<0.故選:B5.(2022·安徽省太和中學高二開學考試)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B由SKIPIF1<0,①當SKIPIF1<0時函數(shù)SKIPIF1<0單調(diào)遞增,不合題意;②當SKIPIF1<0時,函數(shù)SKIPIF1<0的極值點為SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0不單調(diào),必有SKIPIF1<0,解得SKIPIF1<0.故選:B.6.(2022·江蘇·高二)若函數(shù)SKIPIF1<0在其定義域上不單調(diào),則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A可得SKIPIF1<0,SKIPIF1<0SKIPIF1<0在其定義域上不單調(diào)等價于方程SKIPIF1<0有兩個解,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故選:A.7.(2022·全國·高二課時練習)已知函數(shù)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào)的一個充分不必要條件是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上不單調(diào),令SKIPIF1<0,對稱軸方程為SKIPIF1<0,則函數(shù)SKIPIF1<0與SKIPIF1<0軸在SKIPIF1<0上有交點.當SKIPIF1<0時,顯然不成立;當SKIPIF1<0時,有SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0.四個選項中的范圍,只有SKIPIF1<0為SKIPIF1<0的真子集,∴SKIPIF1<0在SKIPIF1<0上不單調(diào)的一個充分不必要條件是SKIPIF1<0.故選:C.高頻考點五:函數(shù)單調(diào)性的應(yīng)用①導函數(shù)與原函數(shù)圖象的單調(diào)性1.(2021·廣西河池·高二階段練習(理))如果函數(shù)SKIPIF1<0的導函數(shù)SKIPIF1<0的圖象如圖所示,則以下關(guān)于函數(shù)SKIPIF1<0的判斷:①在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增;②在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減;③在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增;④SKIPIF1<0是極小值點;⑤SKIPIF1<0是極大值點.其中不正確的是(
)A.③⑤ B.②③ C.①④⑤ D.①②④【答案】D由圖可知,在區(qū)間SKIPIF1<0內(nèi),SKIPIF1<0有正有負,①錯誤;在區(qū)間SKIPIF1<0內(nèi),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,②錯誤;在區(qū)間SKIPIF1<0內(nèi),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,③正確;不存在SKIPIF1<0,使當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,④錯誤;存在SKIPIF1<0,使當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,如SKIPIF1<0,⑤正確故選:D.2.(2021·福建省漳州第一中學高二階段練習)SKIPIF1<0是函數(shù)y=f(x)的導函數(shù),若y=SKIPIF1<0的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是(
)A. B.C. D.【答案】D由導函數(shù)的圖象可知,當x<0時,SKIPIF1<0>0,即函數(shù)f(x)為增函數(shù);當0<x<2時,SKIPIF1<0<0,即f(x)為減函數(shù);當x>2時,SKIPIF1<0>0,即函數(shù)f(x)為增函數(shù).觀察選項易知D正確.故選:D3.(2021·海南·三亞華僑學校高三階段練習)已知函數(shù)SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的圖象可能是(
)A. B.C. D.【答案】C由函數(shù)SKIPIF1<0的圖象可知:當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0單調(diào)遞增.故選:C4.(2021·全國·高二課時練習)如圖為函數(shù)SKIPIF1<0的導函數(shù)SKIPIF1<0的圖象,那么函數(shù)SKIPIF1<0的圖象可能為(
)A. B.C. D.【答案】A由導函數(shù)SKIPIF1<0的圖象,可知當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增.綜上,函數(shù)SKIPIF1<0的圖象可能如A中圖所示故選:A5.(2021·江西省銅鼓中學高二階段練習(理))設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導數(shù),SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的圖像最有可能的是(
).A. B.C. D.【答案】C解:由導函數(shù)SKIPIF1<0的圖象可知:導函數(shù)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增;導函數(shù)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞減;導函數(shù)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增;故選:C②比較大小1.(2022·云南省昆明市第十中學高二階段練習)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BSKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是增函數(shù),而SKIPIF1<0,所以SKIPIF1<0.故選:B.2.(2022·重慶市清華中學校高二階段練習)若函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0,故選項A不正確.SKIPIF1<0,故選項B,D不正確,選項C正確.故選:C3.(2022·河南·民權(quán)縣第一高級中學高三階段練習(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C因為SKIPIF1<0得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0.故選:C.4.(2022·四川·成都外國語學校高二階段練習(理))已知SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B設(shè)SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,于是當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0單調(diào)遞減,注意到SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0.故選:B.③構(gòu)造函數(shù)解不等式1.(2022·全國·高二課時練習)已知定義在R上的奇函數(shù)f(x),當x>0時,SKIPIF1<0,且f(3)=0,則不等式f(x)≥0的解集為(
)A.(﹣∞,﹣3]∪[3,+∞) B.[﹣3,3]C.(﹣∞,﹣3]∪[0,3] D.[﹣3,0]∪[3,+∞)【答案】D設(shè)SKIPIF1<0,(x>0),則其導數(shù)SKIPIF1<0,而當x>0時SKIPIF1<0,所以g′(x)>0,即g(x)在(0,+∞)上為增函數(shù),又由f(3)=0,則SKIPIF1<00,所以SKIPIF1<0區(qū)間(0,3)上,g(x)<0,在區(qū)間(3,+∞)上,g(x)>0,則在區(qū)間(0,3)上,f(x)<0,在區(qū)間(3,+∞)上,f(x)>0,又由f(x)是定義在R上的奇函數(shù),則f(0)=0,SKIPIF1<0,且在區(qū)間(﹣∞,﹣3)上,f(x)<0,在區(qū)間(﹣3,0)上,f(x)>0,綜合可得:不等式f(x)≥0的解集為[﹣3,0]∪[3,+∞).故選:D.2.(2022·河南·高二階段練習(文))已知函數(shù)SKIPIF1<0對于任意的SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0是函數(shù)SKIPIF1<0的導函數(shù),則下列各式正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【答案】C令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.故選:C3.(2022·全國·高三專題練習(理))設(shè)函數(shù)SKIPIF1<0是偶函數(shù)SKIPIF1<0(SKIPIF1<0)的導函數(shù),SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則使得SKIPIF1<0成立的x的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【答案】D令SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上為減函數(shù),又∵SKIPIF1<0,∴函數(shù)SKIPIF1<0為定義域上的奇函數(shù),SKIPIF1<0在SKIPIF1<0上為減函數(shù).又∵SKIPIF1<0,∴SKIPIF1<0,∴不等式SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,或SKIPIF1<0,∵SKIPIF1<0成立的x的取值范圍是SKIPIF1<0,故選:D4.(2022·重慶南開中學高二期末)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0上的增函數(shù),而SKIPIF1<0可化為SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0,故選:A.5.(2022·甘肅·永昌縣第一高級中學高二階段練習(理))已知f(x)為R上的可導函數(shù),其導函數(shù)為SKIPIF1<0,且對于任意的x∈R,均有SKIPIF1<0,則(
)A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)【答案】D構(gòu)造函數(shù)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,即SKIPIF1<0.故選:D高頻考點六:含參問題討論單調(diào)性①導函數(shù)有效部分是一次型(或可化為一次型)1.(2022·廣東·清遠市博愛學校高二階段練習)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;【答案】(1)答案見解析;(2)SKIPIF1<0.(1)SKIPIF1<0且SKIPIF1<0,∴當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0遞增;當SKIPIF1<0時:若SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0遞減;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0遞增;∴SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上遞增;SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增;2.(2022·全國·高三專題練習(理))設(shè)a為實數(shù),函數(shù)f(x)=SKIPIF1<0-2x+2a,x∈R.(1)求f(x)的單調(diào)區(qū)間與極值;【答案】(1)f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),單調(diào)遞增區(qū)間是(ln2,+∞),極小值f(ln2)=2-2ln2+2a,無極大值;(1)由f(x)=SKIPIF1<0-2x+2a(x∈R)知SKIPIF1<0=SKIPIF1<0-2.令SKIPIF1<0=0,得x=ln2.當x<ln2時,SKIPIF1<0<0,故函數(shù)f(x)在區(qū)間(-∞,ln2)上單調(diào)遞減;當x>ln2時,SKIPIF1<0>0,故函數(shù)f(x)在區(qū)間(ln2,+∞)上單調(diào)遞增.∴f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),單調(diào)遞增區(qū)間是(ln2,+∞),f(x)極小值為f(ln2)=SKIPIF1<0-2ln2+2a=2-2ln2+2a,無極大值;2.(2022·全國·高二)已知函數(shù)SKIPIF1<0,討論SKIPIF1<0的單調(diào)性.【答案】答案見解析解:SKIPIF1<0
SKIPIF1<0
SKIPIF1<0,SKIPIF1<0
SKIPIF1<0,SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增SKIPIF1<0當SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.綜上,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.3.(2022·全國·高二課時練習)已知函數(shù)SKIPIF1<0.討論SKIPIF1<0的單調(diào)性.解:因為SKIPIF1<0,所以定義域為SKIPIF1<0,所以SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.綜上,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.②導函數(shù)有效部分是二次型(或可化為二次型)且可因式分解型1.(2022·江蘇宿遷·高二期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(1)因為SKIPIF1<0,故可得SKIPIF1<0SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增.綜上所述:當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0和SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0和SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.2.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,討論SKIPIF1<0的單調(diào)性.【答案】當SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.當SKIPIF1<0,則x∈SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增.當a<0,則x∈SKIPIF1<0時,SKIPIF1<0;x∈SKIPIF1<0時,SKIPIF1<0故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.綜上所述,當SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.3.(2022·全國·高二課時練習)已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)求SKIPIF1<0的單調(diào)區(qū)間.【答案】(1)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全風險試題及答案
- 安全閥考核試題及答案
- 安全多項選擇試題及答案
- 機電工程新手指南2025年考試試題及答案
- 云網(wǎng)安交付練習試卷附答案
- 英語四年級試卷及答案
- 英語六年級試卷題及答案
- 備考2025年信息系統(tǒng)考試熱點試題
- 新媒體時代下西方政治宣傳的變化試題及答案
- 信息系統(tǒng)項目管理師考試勝出法則與關(guān)鍵知識點試題及答案
- SHT+3413-2019+石油化工石油氣管道阻火器選用檢驗及驗收標準
- 電場電場強度
- 國開可編程控制器應(yīng)用形考實訓任務(wù)二
- 白酒質(zhì)量要求 第4部分:醬香型白酒
- JT-T-329-2010公路橋梁預應(yīng)力鋼絞線用錨具、夾具和連接器
- 湖北武漢市2024屆高三沖刺模擬數(shù)學試卷含解析
- 2024年浙江臺州椒江區(qū)公安局警務(wù)輔助人員招聘筆試參考題庫附帶答案詳解
- 廣東省廣州市天河區(qū)2024年八年級下冊數(shù)學期末考試試題含解析
- 土木工程專業(yè)畢業(yè)答辯常問問題
- 紅色大氣商務(wù)企業(yè)啟動會企業(yè)啟動儀式
- 2024年新改版蘇教版六年級下冊科學全冊復習資料
評論
0/150
提交評論