




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省滁州市九校高二數(shù)學第一學期期末綜合測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,其中一條漸近線與x軸的夾角為,則雙曲線的漸近線方程是()A. B.C. D.2.若直線與圓相切,則()A. B.或2C. D.或3.算盤是中國傳統(tǒng)計算工具,是中國人在長期使用算籌的基礎上發(fā)明的,“珠算”一詞最早見于東漢徐岳所撰的《數(shù)術記遺》,其中有云:“珠算控帶四時,經(jīng)緯三才.”北周甄鸞為此作注,大意是:把木板刻為3部分,上、下兩部分是停游珠用的,中間一部分是作定位用的.下圖是一把算盤的初始狀態(tài),自右向左,分別是個位、十位、百位…,上面一粒珠(簡稱上珠)代表5,下面一粒珠(簡稱下珠)是1,即五粒下珠的大小等于同組一粒上珠的大小.現(xiàn)在從個位和十位這兩組中隨機選擇往下?lián)芤涣I现椋蠐?粒下珠,得到的數(shù)為質數(shù)(除了1和本身沒有其它的約數(shù))的概率是()A. B.C. D.4.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復數(shù)的虛部()A. B.C. D.5.已知等差數(shù)列的前n項和為,且,,則為()A. B.C. D.6.校慶當天,學校需要在靠墻的位置用圍欄圍起一個面積為200平方米的矩形場地.用來展示校友的書畫作品.靠墻一側不需要圍欄,則圍欄總長最小需要()米A.20 B.40C. D.7.執(zhí)行如圖所示的算法框圖,則輸出的結果是()A. B.C. D.8.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.9.已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.10.雅言傳承文明,經(jīng)典浸潤人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.11.函數(shù)為的導函數(shù),令,則下列關系正確的是()A. B.C. D.12.圓與圓的位置關系為()A.外切 B.內(nèi)切C.相交 D.相離二、填空題:本題共4小題,每小題5分,共20分。13.直線l交橢圓于A,B兩點,線段AB的中點為,直線是線段AB的垂直平分線,若,D為垂足,則D點的軌跡方程是______14.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______15.若直線的方向向量為,平面的一個法向量為,則直線與平面所成角的正弦值為______.16.橢圓上一點到兩個焦點的距離之和等于,則的標準方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓.(1)過點作圓的切線,求切線的方程;(2)若直線過點且被圓截得的弦長為2,求直線的方程.18.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標,若不存在,請說明理由.19.(12分)已知拋物線的準線與軸的交點為.(1)求的方程;(2)若過點的直線與拋物線交于,兩點.請判斷是否為定值,若是,求出該定值;若不是,請說明理由.20.(12分)如圖,已知平行六面體中,底面ABCD是邊長為1的正方形,,,設,,(1)用,,表示,并求;(2)求21.(12分)命題:函數(shù)有意義;命題:實數(shù)滿足.(1)當且為真時,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.22.(10分)已知數(shù)列是公比為2的等比數(shù)列,是與的等差中項(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由已知條件計算可得,即得到結果.【詳解】由雙曲線,可知漸近線方程為,又雙曲線的一條漸近線與x軸的夾角為,故,即漸近線方程為.故選:C2、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.3、B【解析】根據(jù)古典概型概率計算公式,計算出所求的概率.【詳解】依題有,算盤所表示的數(shù)可能有:17,26,8,35,62,71,80,53,其中是質數(shù)的有:17,71,53,故所求事件的概率為故選:B4、D【解析】由歐拉公式的定義和復數(shù)的概念進行求解.【詳解】由題意,得,則復數(shù)的虛部為.故選:D.5、C【解析】直接由等差數(shù)列求和公式結合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.6、B【解析】在出矩形中,設,得到,結合基本不等式,即可求解【詳解】如圖所示,在矩形中,設,則,根據(jù)題意,可得矩形圍欄總長為因為,可得,當且僅當時,即時,等號成立,即圍欄總長最小需要米.故選:B.7、B【解析】列舉出循環(huán)的每一步,利用裂項相消法可求得輸出結果.【詳解】第一次循環(huán),不成立,,;第二次循環(huán),不成立,,;第三次循環(huán),不成立,,;以此類推,最后一次循環(huán),不成立,,.成立,跳出循環(huán)體,輸出.故選:B.8、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.9、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結合基本不等式,即可求解.【詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當且僅當,即時等號成立,故的最小值為.故選:C10、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.11、B【解析】求導后,令,可求得,再利用導數(shù)可得為減函數(shù),比較的大小后,根據(jù)為減函數(shù)可得答案.【詳解】由題意得,,,解得,所以所以,所以為減函數(shù)因為,所以,故選:B【點睛】關鍵點點睛:比較大小的關鍵是知道的單調性,利用導數(shù)可得的單調性.12、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關系進行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因為兩圓的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設直線l的方程為,代入橢圓方程并化簡,然后根據(jù)M為線段AB的中點結合根與系數(shù)的關系得到k,t間的關系,進而寫出線段AB的垂直平分線的直線方程,可以判斷它過定點E,再考慮直線l的斜率不存在的情況,根據(jù)題意可知,點D在以OE為直徑的圓上,最后求出點D的軌跡方程.【詳解】設直線l的方程為,代入橢圓方程并化簡得:,設,則,解得.因為直線是線段AB的垂直平分線,故直線:,即:令,此時,,于是直線過定點當直線l的斜率不存在時,,直線也過定點點D在以OE為直徑的圓上,則圓心為,半徑,所以點D軌跡方程為:14、##【解析】根據(jù)題設及雙曲線離心率公式可得,結合雙曲線離心率的性質即可求離心率.【詳解】由題設,,整理得:,所以,而,故.故答案為:.15、【解析】根據(jù)空間向量夾角公式進行求解即可.【詳解】設與的夾角為,直線與平面所成角為,所以,故答案為:16、【解析】根據(jù)橢圓定義求出其長半軸長,再結合焦點坐標即可計算作答.【詳解】因橢圓上一點到兩個焦點的距離之和等于,則該橢圓長半軸長,而半焦距,于是得短半軸長b,有,所以的標準方程為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)直線與圓相切,求得切線的斜率,利用點斜式即可寫出切線方程;(2)利用弦長公式,結合已知條件求得直線的斜率,即可求得直線方程.【小問1詳解】圓,圓心,半徑,又點的坐標滿足圓方程,故可得點在圓上,則切線斜率滿足,又,故滿足題意的切線斜率,則過點的切線方程為,即.【小問2詳解】直線過點,若斜率不存在,此時直線的方程為,將其代入可得或,故直線截圓所得弦長為滿足題意;若斜率存在時,設直線方程為,則圓心到直線的距離,由弦長公式可得:,解得,也即,解得,則此時直線的方程為:.綜上所述,直線的方程為或.18、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質即可得出;(2)假設存在點,滿足題設條件,設直線的方程,根據(jù)韋達定理即可求出點的坐標【小問1詳解】設動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設,由得設,,,,則,由①式得,,即消去,,得,即,,,存在點使得19、(1)(2)是定值,定值為【解析】(1)由拋物線的準線求標準方程;(2)直線與拋物線相交求定值,解聯(lián)立方程消未知數(shù),利用韋達定理,求線段長,再求它們的倒數(shù)的平方和.【小問1詳解】由題意,可得,即,故拋物線的方程為.【小問2詳解】為定值,且定值是.下面給出證明.證明:設直線的方程為,,,聯(lián)立拋物線有,消去得,則,又,.得因此為定值,且定值是.20、(1),(2)0【解析】(1)把,,作為基底,利用空間向量基本定理表示,然后根據(jù)已知的數(shù)據(jù)求,(2)先把用基底表示,然后化簡求解【小問1詳解】因為,,,,所以,因為底面ABCD是邊長為1的正方形,,,所以【小問2詳解】因為,底面ABCD是邊長為1的正方形,,,所以21、(1);(2)【解析】(1)首先將命題,化簡,然后由為真可得,均為真,取交集即可求出實數(shù)的取值范圍;(2)將是的充分不必要條件轉化為是的必要不充分條件,進而將問題轉化為,從而求出實數(shù)的取值范圍【詳解】(1)若命題為真,則,解得,當時,命題,若命題為真,則,解得,所以,因為為真,所以,均為真,所以,所以,所以實數(shù)的取值范圍為(2)因為是的充分不必要條件,所以是的必要不充分條件,所以,所以或,所以,所以實
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝修侵權和解協(xié)議書
- 車位打包購買協(xié)議書
- 食品供應免責協(xié)議書
- 長期外聘講師協(xié)議書
- 餐廳管理委托協(xié)議書
- 音響安裝合同協(xié)議書
- 部門車位分配協(xié)議書
- 超市供貨轉讓協(xié)議書
- 除塵設備技術協(xié)議書
- 車輛頂賬合同協(xié)議書
- 2025屆高三語文專題復習:文言文閱讀-實詞的五種類型
- 土木工程CAD-終結性考核-國開(SC)-參考資料
- 放射性皮膚損傷的護理-中華護理學會團體標準
- 帕金森病的護理教學查房
- 智能手環(huán)項目財務分析報告
- 廣東省2019年中考化學試卷(含答案)
- 2024年國家低壓電工證理論考試題庫(含答案)
- 甲狀腺手術甲狀旁腺保護
- HG20202-2014 脫脂工程施工及驗收規(guī)范
- OpenCV圖像處理技術(微課版)(全彩)電子教案
- 2024年江蘇省鎮(zhèn)江市潤州區(qū)中考第二次中考生物模擬試卷
評論
0/150
提交評論