




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽定遠(yuǎn)啟明中學(xué)數(shù)學(xué)高一上期末經(jīng)典試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若直線經(jīng)過兩點(diǎn),,且傾斜角為,則的值為()A.2 B.1C. D.2.若集合A={x|-2<x<1},B={x|x<-1或x>3},則A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}3.下列函數(shù)是奇函數(shù),且在區(qū)間上是增函數(shù)的是A. B.C. D.4.與-2022°終邊相同的最小正角是()A.138° B.132°C.58° D.42°5.計(jì)算A.-2 B.-1C.0 D.16.若,則()A.2 B.1C.0 D.7.已知集合,則A B.C. D.8.函數(shù)在區(qū)間的圖象大致是()A. B.C. D.9.已知角終邊經(jīng)過點(diǎn),且,則的值是()A. B.C. D.10.已知點(diǎn),向量,若,則點(diǎn)的坐標(biāo)為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知表示這個(gè)數(shù)中最大的數(shù).能夠說明“對(duì)任意,都有”是假命題的一組整數(shù)的值依次可以為_____12.在中,,,與的夾角為,則_____13.命題的否定是__________14.已知任何一個(gè)正實(shí)數(shù)都可以表示成,則的取值范圍是________________;的位數(shù)是________________.(參考數(shù)據(jù))15.已知函數(shù),使方程有4個(gè)不同的解:,則的取值范圍是_________;的取值范圍是________.16.已知函數(shù),則函數(shù)f(x)的值域?yàn)開_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)()求函數(shù)的最小正周期()求函數(shù)的單調(diào)遞減區(qū)間18.已知函數(shù),(1)求函數(shù)的最大值及取得最大值時(shí)的值;(2)若方程在上的解為,,求的值19.已知函數(shù).(1)求f(x)的定義域及單調(diào)區(qū)間;(2)求f(x)的最大值,并求出取得最大值時(shí)x的值;(3)設(shè)函數(shù),若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實(shí)數(shù)a的取值范圍.20.已知函數(shù).(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并說明理由;(3)若函數(shù),求函數(shù)零點(diǎn).21.在①函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到的圖象,且圖象關(guān)于原點(diǎn)對(duì)稱;②向量,,,;③函數(shù).在以上三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中空格位置,并解答.已知______,函數(shù)的圖象相鄰兩條對(duì)稱軸之間的距離為.(1)若,且,求的值;(2)求函數(shù)在上的單調(diào)遞減區(qū)間.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】直線經(jīng)過兩點(diǎn),,且傾斜角為,則故答案為A.2、A【解析】直接根據(jù)交集的定義即可得解.【詳解】解:因?yàn)锳={x|-2<x<1},B={x|x<-1或x>3},所以.故選:A.3、B【解析】逐一考查所給函數(shù)的單調(diào)性和奇偶性即可.【詳解】逐一考查所給函數(shù)的性質(zhì):A.,函數(shù)為奇函數(shù),在區(qū)間上不具有單調(diào)性,不合題意;B.,函數(shù)為奇函數(shù),在區(qū)間上是增函數(shù),符合題意;C.,函數(shù)為非奇非偶函數(shù),在區(qū)間上是增函數(shù),不合題意;D.,函數(shù)為奇函數(shù),在區(qū)間上不具有單調(diào)性,不合題意;本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查函數(shù)的單調(diào)性,函數(shù)的奇偶性等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.4、A【解析】根據(jù)任意角的周期性,將-2022°化為,即可確定最小正角.【詳解】由-2022°,所以與-2022°終邊相同的最小正角是138°.故選:A5、C【解析】.故選C.6、C【解析】根據(jù)正弦、余弦函數(shù)的有界性及,可得,,再根據(jù)同角三角函數(shù)的基本關(guān)系求出,即可得解;【詳解】解:∵,,又∵,∴,,又∵,∴,∴,故選:C7、C【解析】分析:先解指數(shù)不等式得集合A,再根據(jù)偶次根式被開方數(shù)非負(fù)得集合B,最后根據(jù)補(bǔ)集以及交集定義求結(jié)果.詳解:因?yàn)椋?因?yàn)?,所以因此,選C.點(diǎn)睛:合的基本運(yùn)算的關(guān)注點(diǎn)(1)看元素組成.集合是由元素組成的,從研究集合中元素的構(gòu)成入手是解決集合運(yùn)算問題的前提(2)有些集合是可以化簡(jiǎn)的,先化簡(jiǎn)再研究其關(guān)系并進(jìn)行運(yùn)算,可使問題簡(jiǎn)單明了,易于解決(3)注意數(shù)形結(jié)合思想的應(yīng)用,常用的數(shù)形結(jié)合形式有數(shù)軸、坐標(biāo)系和Venn圖8、C【解析】判斷函數(shù)非奇非偶函數(shù),排除選項(xiàng)A、B,在計(jì)算時(shí)的函數(shù)值可排除選項(xiàng)D,進(jìn)而可得正確選項(xiàng).【詳解】因?yàn)?,且,所以既不是奇函?shù)也不是偶函數(shù),排除選項(xiàng)A、B,因?yàn)?,排除選項(xiàng)D,故選:C【點(diǎn)睛】思路點(diǎn)睛:函數(shù)圖象的辨識(shí)可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.9、A【解析】由終邊上的點(diǎn)及正切值求參數(shù)m,再根據(jù)正弦函數(shù)的定義求.【詳解】由題設(shè),,可得,所以.故選:A10、B【解析】設(shè)點(diǎn)坐標(biāo)為,利用向量的坐標(biāo)運(yùn)算建立方程組,解之可得選項(xiàng).【詳解】設(shè)點(diǎn)坐標(biāo)為,,A,所以,又,,所以.解得,解得點(diǎn)坐標(biāo)為.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、(答案不唯一)【解析】首先利用新定義,再列舉命題為假命題的一組數(shù)值,再根據(jù)定義,驗(yàn)證命題是假命題.【詳解】設(shè),,則,而,,故命題為假命題,故依次可以為故答案為:(答案不唯一)12、【解析】利用平方運(yùn)算可將問題轉(zhuǎn)化為數(shù)量積和模長(zhǎng)的運(yùn)算,代入求得,開方得到結(jié)果.【詳解】【點(diǎn)睛】本題考查向量模長(zhǎng)的求解問題,關(guān)鍵是能夠通過平方運(yùn)算將問題轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積和模長(zhǎng)的運(yùn)算,屬于??碱}型.13、;【解析】根據(jù)存在量詞的命題的否定為全稱量詞命題即可得解;【詳解】解:因?yàn)槊}“”為存在量詞命題,其否定為全稱量詞命題為故答案為:14、①.②.【解析】根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性及對(duì)數(shù)運(yùn)算、對(duì)數(shù)式指數(shù)式的轉(zhuǎn)化即可求解.【詳解】因?yàn)椋?,由,故知,共?1位.故答案為:;3115、①.②.【解析】先畫出分段函數(shù)的圖像,依據(jù)圖像得到之間的關(guān)系式以及之間的關(guān)系式,分別把和轉(zhuǎn)化成只有一個(gè)自變量的代數(shù)式,再去求取值范圍即可.【詳解】做出函數(shù)的圖像如下:在單調(diào)遞減:最小值0;在單調(diào)遞增:最小值0,最大值2;在上是部分余弦型曲線:最小值,最大值2.若方程有4個(gè)不同的解:,則不妨設(shè)四個(gè)解依次增大,則是方程的解,則,即;是方程的解,則由余弦型函數(shù)的對(duì)稱性可知.故,由得即當(dāng)時(shí),單調(diào)遞減,則故答案為:①;②16、【解析】求函數(shù)的導(dǎo)數(shù)利用函數(shù)的單調(diào)性求值域即可.【詳解】解:函數(shù),,由,解得,此時(shí)函數(shù)單調(diào)遞增由,解得,此時(shí)函數(shù)單調(diào)遞減函數(shù)的最小值為(2),(1),(5)最大值為(5),,即函數(shù)的值域?yàn)椋海蚀鸢笧椋军c(diǎn)睛】本題主要考查函數(shù)的值域的求法,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、().(),【解析】利用兩角和差余弦公式、二倍角公式和輔助角公式整理出;(1)根據(jù)求得結(jié)果;(2)令,解出的范圍即可得到結(jié)果.詳解】由題意得:()最小正周期:()令解得:的單調(diào)遞減區(qū)間為:【點(diǎn)睛】本題考查正弦型函數(shù)的最小正周期、單調(diào)區(qū)間的求解問題,涉及到兩角和差余弦公式、二倍角公式、輔助角公式的應(yīng)用.18、(1)當(dāng)時(shí),函數(shù)取得最大值為;(2).【解析】(1)利用同角三角函數(shù)的平方關(guān)系化簡(jiǎn),再利用換元法即可求最值以及取得最值時(shí)的值;(2)求出函數(shù)的對(duì)稱軸,得到和的關(guān)系,利用誘導(dǎo)公式化簡(jiǎn)可得答案.【詳解】(1),令,可得,對(duì)稱軸為,開口向下,所以在上單調(diào)遞增,所以當(dāng),即,時(shí),,所以當(dāng)時(shí),函數(shù)取得最大值為;(2)令,可得,當(dāng)時(shí),是的對(duì)稱軸,因?yàn)榉匠淘谏系慕鉃?,,,,且,所以,所以,所以,所以的值?19、(1)定義域?yàn)椋ī?,3);f(x)的單調(diào)增區(qū)間為(﹣1,1],f(x)的單調(diào)減區(qū)間為[1,3);(2)當(dāng)x=1時(shí),函數(shù)f(x)取最大值1;(3)a≥﹣2.【解析】(1)利用對(duì)數(shù)的真數(shù)大于零即可求得定義域,根據(jù)復(fù)合函數(shù)的單調(diào)性“同增異減”即可求得單調(diào)區(qū)間;(2)根據(jù)函數(shù)的單調(diào)性即可求解;(3)將f(x)≤g(x)轉(zhuǎn)化為x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,即即可,結(jié)合基本不等式即可求解.【詳解】解:(1)令2x+3﹣x2>0,解得:x∈(﹣1,3),即f(x)的定義域?yàn)椋ī?,3),令t=2x+3﹣x2,則,∵為增函數(shù),x∈(﹣1,1]時(shí),t=2x+3﹣x2為增函數(shù);x∈[1,3)時(shí),t=2x+3﹣x2為減函數(shù);故f(x)的單調(diào)增區(qū)間為(﹣1,1];f(x)的單調(diào)減區(qū)間為[1,3)(2)由(1)知當(dāng)x=1時(shí),t=2x+3﹣x2取最大值4,此時(shí)函數(shù)f(x)取最大值1;(3)若不等式f(x)≤g(x)在x∈(0,3)上恒成立,則2x+3﹣x2≤(a+2)x+4在x∈(0,3)上恒成立,即x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,當(dāng)x∈(0,3)時(shí),x+≥2,則﹣(x+)≤﹣2,故a≥﹣220、(1)(2)為奇函數(shù)(3)【解析】(1)要使函數(shù)有意義,必須滿足,從而得到定義域;(2)利用奇偶性定義判斷奇偶性;(3)函數(shù)的零點(diǎn)即方程的根.即的根,又為奇函數(shù),所以.易證:在定義域上為增函數(shù),∴由得,從而解得函數(shù)的零點(diǎn).試題解析:(1)要使函數(shù)有意義,必須滿足,∴,因此,的定義域?yàn)?(2)函數(shù)為奇函數(shù).∵的定義域?yàn)椋瑢?duì)內(nèi)的任意有:,所以,為奇函數(shù).(3)函數(shù)的零點(diǎn)即方程的根.即的根,又為奇函數(shù),所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定義域上為增函數(shù),∴由得解得或,驗(yàn)證當(dāng)時(shí),不符合題意,當(dāng)時(shí),符合題意,所以函數(shù)的零點(diǎn)為.點(diǎn)睛:證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差:,并將此式變形(要注意變形到能判斷整個(gè)式子符號(hào)為止);(3)定號(hào):判斷的正負(fù)(要注意說理的充分性),必要時(shí)要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.21、(1)(2),【解析】(1)若選條件①,根據(jù)函數(shù)的周期性求出,再根據(jù)三角函數(shù)的平移變換規(guī)則及函數(shù)的對(duì)稱性求出,即可得到函數(shù)解析式,再求出的值,最后代入計(jì)算可得;若選條件②,根據(jù)平面向量數(shù)量積的坐標(biāo)表示及三角恒等變換化簡(jiǎn)函數(shù)解析式,再根據(jù)周期性求出,即可得到函數(shù)解析式,再求出的值,最后代入計(jì)算可得;若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 紗線生產(chǎn)過程中的質(zhì)量管理工具與方法考核試卷
- 2023-2024學(xué)年安徽省合肥市廬江縣高一下學(xué)期期末考試語文試題(解析版)
- 探索成長(zhǎng)的舞臺(tái)
- 山東棗莊市薛城區(qū)2024-2025學(xué)年高三5月階段性考試數(shù)學(xué)試題含解析
- 吉林省四平市第三中學(xué)2024-2025學(xué)年初三物理試題練習(xí)試卷(四)試題含解析
- 西安信息職業(yè)大學(xué)《教育文化學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東省鄒城市一中2025屆高三暑假自主學(xué)習(xí)測(cè)試生物試題含解析
- 西安外國(guó)語大學(xué)《生態(tài)景觀規(guī)劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《經(jīng)驗(yàn)軟件工程及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽工業(yè)大學(xué)工程學(xué)院《建筑環(huán)境與設(shè)備概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年海淀高三二模語文試題及答案
- 《民用航空行業(yè)標(biāo)準(zhǔn)體系》
- 專題四“挺膺擔(dān)當(dāng)”主題團(tuán)課
- 高二歷史必修1上冊(cè)第11課 中國(guó)古代的民族關(guān)系與對(duì)外交往 知識(shí)點(diǎn)
- Nonconforming Product Control不合格品控制程序(中英文)
- 介紹家鄉(xiāng) 貴州長(zhǎng)順課件
- 連續(xù)梁預(yù)應(yīng)力常見問題及處理措施
- Teece蒂斯——?jiǎng)討B(tài)能力與戰(zhàn)略管理中譯版講課稿
- 鋼結(jié)構(gòu)樓梯施工方案
- 劍橋少兒英語一級(jí)上冊(cè)Unit1-8測(cè)試卷
- 拌合站水泥罐基礎(chǔ)地基承載力計(jì)算書
評(píng)論
0/150
提交評(píng)論