




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆海南省東方市高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知在直角坐標(biāo)系xOy中,點(diǎn)Q(4,0),O為坐標(biāo)原點(diǎn),直線l:上存在點(diǎn)P滿足.則實(shí)數(shù)m的取值范圍是()A. B.C. D.2.已知數(shù)列滿足,,則()A. B.C.1 D.23.設(shè)各項(xiàng)均為正項(xiàng)的數(shù)列滿足,,若,且數(shù)列的前項(xiàng)和為,則()A. B.C.5 D.64.用數(shù)學(xué)歸納法時(shí),從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.5.從0,2中選一個(gè)數(shù)字,從1,3,5中選兩個(gè)數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中偶數(shù)的個(gè)數(shù)為()A.24 B.18C.12 D.66.若,則下列結(jié)論不正確的是()A. B.C. D.7.若直線a,b是異面直線,點(diǎn)O是空間中不在直線a,b上的任意一點(diǎn),則()A.不存在過點(diǎn)O且與直線a,b都相交的直線B.過點(diǎn)O一定可以作一條直線與直線a,b都相交C.過點(diǎn)O可以作無數(shù)多條直線與直線a,b都相交D.過點(diǎn)O至多可以作一條直線與直線a,b都相交8.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.9.命題“存在,”的否定是()A.存在, B.存在,C.對(duì)任意, D.對(duì)任意,10.設(shè)函數(shù),當(dāng)自變量t由2變到2.5時(shí),函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.1111.點(diǎn)F是拋物線的焦點(diǎn),點(diǎn),P為拋物線上一點(diǎn),P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.12.已知數(shù)列的通項(xiàng)公式為,且數(shù)列是遞增數(shù)列,則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)M(0,2)的距離與點(diǎn)P到該拋物線準(zhǔn)線的距離之和的最小值為______________14.函數(shù)的圖象在點(diǎn)處的切線方程為___________.15.已知空間向量,,若,則______16.平面直角坐標(biāo)系內(nèi)動(dòng)點(diǎn)M()與定點(diǎn)F(4,0)的距離和M到定直線的距離之比是常數(shù),則動(dòng)點(diǎn)M的軌跡是___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的極值;(2)若存在,使不等式成立,求實(shí)數(shù)的取值范圍.18.(12分)如圖,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F(xiàn)為PA中點(diǎn),,.四邊形PDCE為矩形,線段PC交DE于點(diǎn)N(1)求證:AC∥平面DEF;(2)求二面角A-BC-P的余弦值19.(12分)在下面兩個(gè)條件中任選一個(gè)條件,補(bǔ)充在后面問題中的橫線上,并完成解答.條件①:展開式前三項(xiàng)的二項(xiàng)式系數(shù)的和等于37;條件②:第3項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)相等;問題:在二項(xiàng)式的展開式中,已知__________.(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)設(shè),求的值;(3)求的展開式中的系數(shù).20.(12分)如圖,在四棱錐中,平面平面,,,是邊長為的等邊三角形,是以為斜邊的等腰直角三角形,點(diǎn)為線段的中點(diǎn).(1)證明:平面;(2)求直線與平面所成角的正弦值.21.(12分)在數(shù)列中,,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知雙曲線C:的離心率為,過點(diǎn)作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點(diǎn)A,B,且A,B兩點(diǎn)都在以點(diǎn)為圓心的同一圓上,求m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)給定直線設(shè)出點(diǎn)P的坐標(biāo),再借助列出關(guān)于的不等式,然后由不等式有解即可計(jì)算作答.【詳解】因點(diǎn)P在直線l:上,則設(shè),于是有,而,因此,,即,依題意,上述關(guān)于的一元二次不等式有實(shí)數(shù)解,從而有,解得,所以實(shí)數(shù)m的取值范圍是.故選:A2、C【解析】結(jié)合遞推關(guān)系式依次求得的值.【詳解】因?yàn)?,,所以,得由,?故選:C3、D【解析】由利用因式分解可得,即可判斷出數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,從而得到數(shù)列,數(shù)列的通項(xiàng)公式,進(jìn)而求出【詳解】等價(jià)于,而,所以,即可知數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,即有,所以,故故選:D4、C【解析】分別求出n=k時(shí)左端的表達(dá)式,和n=k+1時(shí)左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時(shí),左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時(shí),左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點(diǎn)睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時(shí)左端的表達(dá)式和n=k+1時(shí)左端的表達(dá)式,是解題的關(guān)鍵5、C【解析】根據(jù)題意,結(jié)合計(jì)數(shù)原理中的分步計(jì)算,以及排列組合公式,即可求解.【詳解】根據(jù)題意,要使組成無重復(fù)數(shù)字的三位數(shù)為偶數(shù),則從0,2中選一個(gè)數(shù)字為個(gè)位數(shù),有種可能,從1,3,5中選兩個(gè)數(shù)字為十位數(shù)和百位數(shù),有種可能,故這個(gè)無重復(fù)數(shù)字的三位數(shù)為偶數(shù)的個(gè)數(shù)為.故選:C.6、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來判斷各選項(xiàng)中不等式的正誤.【詳解】,,,,A選項(xiàng)正確;,B選項(xiàng)錯(cuò)誤;由基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,,則等號(hào)不成立,所以,C選項(xiàng)正確;,,D選項(xiàng)正確.故選:B.【點(diǎn)睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.7、D【解析】設(shè)直線與點(diǎn)確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點(diǎn)是空間中不在直線,上的任意一點(diǎn),設(shè)直線與點(diǎn)確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點(diǎn)且與直線,都相交的直線;②若與不平行,則直線即為過點(diǎn)且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點(diǎn)且與直線,都相交的直線.綜上所述,過點(diǎn)至多有一條直線與直線,都相交.故選:D.8、B【解析】直接利用空間向量基本定理求解即可【詳解】因?yàn)樵谄叫辛骟w中,,,,所以,故選:B9、D【解析】特稱命題的否定:將存在改任意并否定原結(jié)論,即可知正確答案.【詳解】由特稱命題的否定為全稱命題,知:原命題的否定為:對(duì)任意,.故選:D10、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.11、C【解析】由拋物線的定義轉(zhuǎn)化后求距離最值【詳解】拋物線的焦點(diǎn),準(zhǔn)線為過點(diǎn)作準(zhǔn)線于點(diǎn),故△PAF的周長為,,可知當(dāng)三點(diǎn)共線時(shí)周長最小,為故選:C12、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的定義得:,所以,當(dāng)三點(diǎn)共線時(shí),最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當(dāng)三點(diǎn)共線時(shí),最小,.故答案為:.14、【解析】求導(dǎo)得到,計(jì)算,根據(jù)點(diǎn)斜式可得到切線方程.【詳解】因此,則,故,又點(diǎn)在函數(shù)的圖象上,故切線方程為:,即.故答案為:15、7【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運(yùn)算,即可求解.【詳解】根據(jù)題意,易知,因?yàn)?,所以,即,解得故答案為?16、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點(diǎn)的軌跡就是集合,由此得.將上式兩邊平方,并化簡(jiǎn),得所以,動(dòng)點(diǎn)的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)在上遞增,在上遞減,極大值為,無極小值(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的符號(hào)求得單調(diào)區(qū)間,再根據(jù)極值的定義即可得解;(2)若存在,使不等式成立,問題轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)求出函數(shù)的最大值即可得出答案.【小問1詳解】解:當(dāng)時(shí),,則,當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的極大值為,無極小值;【小問2詳解】解:若存在,使不等式成立,則,即,則問題轉(zhuǎn)化為,令,,,當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在遞增,在上遞減,所以,所以.18、(1)證明見解析;(2).【解析】(1)記PC交DE于點(diǎn)N,然后證明FN∥AC,進(jìn)而通過線面平行的判定定理證明問題;(2)建立空間直角坐標(biāo)系,進(jìn)而通過空間向量夾角公式求得答案.【小問1詳解】因?yàn)樗倪呅蜳DCE為矩形,線段PC交DE于點(diǎn)N,所以N為PC的中點(diǎn)連接FN,在△PAC中,F(xiàn),N分別為PA,PC的中點(diǎn),所以FN∥AC,因?yàn)槠矫鍰EF,平面DEF,所以AC∥平面DEF.【小問2詳解】因?yàn)镻D垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,所以DA,DC,DP兩兩垂直,如圖以D為原點(diǎn),分別以DA,DC,DP所在直線為x,y,z軸,建立空間直角坐標(biāo)系則,,,,所以,設(shè)平面PBC的法向量為,則,令x=1,則.因?yàn)镻D垂直于梯形ABCD所在的平面,所以是平面ABC的一個(gè)法向量,所以.由圖可知所求二面角為銳角,即所求二面角的余弦值為.19、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個(gè)部分求解后再求和即可.【小問1詳解】選擇①,因?yàn)椋獾?,所以展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為選擇②,因?yàn)?,解得,所以展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為【小問2詳解】令,則,令,則,所以,【小問3詳解】因?yàn)樗缘恼归_式中含的項(xiàng)為:所以展開式中的系數(shù)為560.20、(1)證明見解析;(2).【解析】(1)取的中點(diǎn),連接,,證明兩兩垂直,如圖建系,求出的坐標(biāo)以及平面的一個(gè)法向量,證明結(jié)合面,即可求證;(2)求出的坐標(biāo)以及平面的法向量,根據(jù)空間向量夾角公式計(jì)算即可求解.【小問1詳解】如圖:取的中點(diǎn),連接,,因?yàn)槭沁呴L為等邊三角形,是以為斜邊的等腰直角三角形,可得,,因?yàn)槊婷?,面面,,面,所以平面,因?yàn)槊?,所以,可得兩兩垂直,分別以所在的直線為軸建立空間直角坐標(biāo)系,則,,,,,,所以,,,設(shè)平面的一個(gè)法向量,由,可得,令,則,所以,因?yàn)?,所以,因?yàn)槊妫云矫?【小問2詳解】,,,設(shè)平面的一個(gè)法向量,由,令,,,所以,設(shè)直線與平面所成角為,則.所以直線與平面所成角的正弦值為.21、(1)證明見解析,;(2).【解析】(1)利用等比數(shù)列的定義結(jié)合已知條件即可得到證明.(2)運(yùn)用分組求和的方法,利用等比數(shù)列和等差數(shù)列前項(xiàng)和公式求解即可.【詳解】(1)證明:∵,∴數(shù)列為首項(xiàng)是2,公比是2的等比數(shù)列.∴,∴.(2)由(1)知,,【點(diǎn)睛】本題考查等比數(shù)列的定義,通項(xiàng)公式的應(yīng)用,考查等差數(shù)列和等比數(shù)列前項(xiàng)和公式的應(yīng)用,考查分組求和的方法,屬于基礎(chǔ)題.22、(1)(2)或【解析】(1)利用雙曲線離心率、點(diǎn)在雙曲線上及得到關(guān)于、、的方程組,進(jìn)而求出雙曲線的標(biāo)準(zhǔn)方程;(2)聯(lián)立直線和雙曲線的方程,得到關(guān)于的一元二次方程,利用直線和雙曲線的位置
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年七年級(jí)語文下冊(cè)期末復(fù)習(xí)【古詩詞默寫題】訓(xùn)練卷附答案
- 河北省鹽山市2025屆高三第三次模擬考試數(shù)學(xué)試卷附解析
- 福建省漳州高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)2024-2025學(xué)年高一下冊(cè)第二次質(zhì)量檢測(cè)數(shù)學(xué)試卷附解析
- 碳減排技術(shù)商業(yè)化路徑研究-洞察闡釋
- 項(xiàng)目撤回可行性研究報(bào)告
- 身份認(rèn)證安全漏洞修復(fù)基礎(chǔ)知識(shí)點(diǎn)歸納
- 石大學(xué)前兒童保育學(xué)課外必讀:6-1食品污染
- 基于生態(tài)修復(fù)技術(shù)的填埋場(chǎng)污染地下水治理方法
- 經(jīng)濟(jì)與家庭結(jié)構(gòu)變化對(duì)托育服務(wù)的影響
- 幼兒園師幼互動(dòng)質(zhì)量的調(diào)查與分析
- 團(tuán)員組織關(guān)系轉(zhuǎn)接介紹信(樣表)
- 抖音員工號(hào)申請(qǐng)?jiān)诼氉C明參考模板
- 非煤礦山-礦山機(jī)電安全管理課件
- 2023年廣東初中學(xué)業(yè)水平考試生物試卷真題(含答案)
- 醫(yī)院電子病歷系統(tǒng)應(yīng)用水平分級(jí)評(píng)價(jià) 4級(jí)實(shí)證材料選擇項(xiàng)
- 工程制圖及機(jī)械CAD基礎(chǔ)知到章節(jié)答案智慧樹2023年吉林大學(xué)
- 路橋工程建設(shè)有限公司管理規(guī)定匯編
- 初級(jí)會(huì)計(jì)職稱考試教材《初級(jí)會(huì)計(jì)實(shí)務(wù)》
- 途觀四驅(qū)傳動(dòng)軸和后橋主維修手冊(cè)
- 小區(qū)綠化養(yǎng)護(hù)與管理
- 職位上升申請(qǐng)書 晉升職位申請(qǐng)書(3篇)
評(píng)論
0/150
提交評(píng)論