




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省鄭州市高新區(qū)一中2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如果直線與直線垂直,那么的值為()A. B.C. D.22.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.453.已知雙曲線:與橢圓:有相同的焦點,且一條漸近線方程為:,則雙曲線的方程為()A. B.C. D.4.函數(shù)在上的極大值點為()A. B.C. D.5.若函數(shù)在區(qū)間上有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.6.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.7.雙曲線的虛軸長為()A. B.C.3 D.68.據(jù)有關(guān)文獻(xiàn)記載:我國古代一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)比上一層燈數(shù)都多為常數(shù)盞,底層的燈數(shù)是頂層的倍,則塔的底層共有燈()A.盞 B.盞C.盞 D.盞9.已知,是雙曲線的左,右焦點,經(jīng)過點且與x軸垂直的直線與雙曲線的一條漸近線相交于點A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.10.已知直線過點且與直線平行,則直線方程為()A. B.C. D.11.設(shè)滿足則的最大值為A. B.2C.4 D.1612.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將4名志愿者分配到3個不同的北京冬奧場館參加接待工作,每個場館至少分配一名志愿者的方案種數(shù)為________.(用數(shù)字作答)14.對于實數(shù)表示不超過的最大整數(shù),如.已知數(shù)列的通項公式,前項和為,則___________.15.若點到點的距離比它到定直線的距離小1,則點滿足的方程為_____________16.定義點到曲線的距離為該點與曲線上所有點之間距離的最小值,則點到曲線距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為深入學(xué)習(xí)貫徹總書記在黨史學(xué)習(xí)教育動員大會上的重要講話精神和中共中央有關(guān)決策部署,推動教育系統(tǒng)圍繞建黨百年重大主題,深化中學(xué)在校師生理想信念教育,引導(dǎo)師生學(xué)史明理、學(xué)史增信、學(xué)史崇德、學(xué)史力行,以昂揚的狀態(tài)迎接中國共產(chǎn)黨建黨周年,哈工大附中高二年級組織本年級同學(xué)開展了一場黨史知識競賽.為了解本次知識競賽的整體情況,隨機抽取了名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,得到如圖所示的頻率分布直方圖(1)求直方圖中a的值,并求該次知識競賽成績的第50百分位數(shù)(精確到0.1);(2)已知該樣本分?jǐn)?shù)在的學(xué)生中,男生占,女生占現(xiàn)從該樣本分?jǐn)?shù)在的學(xué)生中隨機抽出人,求至少有人是女生的概率.18.(12分)已知橢圓的焦點為,且該橢圓過點(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓上的點滿足,求的值19.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍20.(12分)已知橢圓的上、下頂點分別為A,B,離心率為,橢圓C上的點與其右焦點F的最短距離為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線與橢圓C交于P,Q兩點,直線PA與QB的斜率分別為,,且,那么直線l是否過定點,若過定點,求出該定點坐標(biāo);否則,請說明理由.21.(12分)如圖所示,四棱錐的底面為矩形,,,過底面對角線作與平行的平面交于點(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值22.(10分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實現(xiàn)循環(huán)共享.某記者來到中國傳媒大學(xué)探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A2、C【解析】設(shè)雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標(biāo),把點的坐標(biāo)代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設(shè)點是雙曲線與截面的一個交點,設(shè)雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:3、B【解析】由漸近線方程,設(shè)出雙曲線方程,結(jié)合與橢圓有相同的焦點,求出雙曲線方程.【詳解】∵雙曲線:的一條漸近線方程為:∴設(shè)雙曲線:∵雙曲線與橢圓有相同的焦點∴,解得:∴雙曲線的方程為.故選:B.4、C【解析】求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可求出函數(shù)的極大值點【詳解】,∴當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴函數(shù)在的極大值點為故選:C5、D【解析】由題意,即在區(qū)間上有兩個異號零點,令,利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系判斷單調(diào)性,數(shù)形結(jié)合即可求解【詳解】解:由題意,即在區(qū)間上有兩個異號零點,構(gòu)造函數(shù),則,令,得,令,得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又時,,時,,且,所以,即,所以的范圍故選:D6、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B7、D【解析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【詳解】因為,所以,所以雙曲線的虛軸長為.故選:D.8、C【解析】根據(jù)給定條件利用等差數(shù)列前n項和公式列式計算即可作答.【詳解】依題意,層塔從上層到下層掛燈盞數(shù)依次排成一列可得等差數(shù)列,,于是得,解得,,所以塔的底層共有燈盞.故選:C9、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進(jìn)而轉(zhuǎn)化為,的不等式,結(jié)合可得離心率的取值范圍【詳解】解:因為經(jīng)過點且與軸垂直的直線與雙曲線的一條漸近線相交于點,且在第三象限,四邊形為平行四邊形,所以由雙曲線的對稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因為,所以,,即,所以,即,即,故,所以.故選:B10、C【解析】由題意,直線的斜率為,利用點斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點,所以直線的方程為,即,故選:C.11、C【解析】可行域如圖,則直線過點A(0,1)取最大值2,則的最大值為4,選C.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大或最小值會在可行域的端點或邊界上取得.12、A【解析】由題可設(shè),結(jié)合條件可得,即求.【詳解】∵圓心在上,∴可設(shè)圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、36【解析】先將4人分成2、1、1三組,再安排給3個不同的場館,由分步乘法計數(shù)原理可得.【詳解】將4人分到3個不同的體育場館,要求每個場館至少分配1人,則必須且只能有1個場館分得2人,其余的2個場館各1人,可先將4人分為2、1、1的三組,有種分組方法,再將分好的3組對應(yīng)3個場館,有種方法,則共有種分配方案.故答案為:3614、54【解析】由,利用裂項相消法求得,再由的定義求解.【詳解】由已知可得:,,當(dāng)時,,;當(dāng)時,,;當(dāng)時,,;當(dāng)時,,;當(dāng)時,;;所以.故答案為:54.15、【解析】根據(jù)拋物線的定義可得動點的軌跡方程【詳解】點到點的距離比它到直線的距離少1,所以點到點的距離與到直線的距離相等,所以其軌跡為拋物線,焦點為,準(zhǔn)線為,所以方程為,故答案為:16、2【解析】設(shè)出曲線上任意一點,利用兩點間距離公式表達(dá)出,利用基本不等式求出最小值.【詳解】當(dāng)時,顯然不成立,故,此時,設(shè)曲線任意一點,則,其中,當(dāng)且僅當(dāng),即時等號成立,此時即為最小值.故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用頻率和為1求出a;利用百分位數(shù)的定義求出知識競賽成績的第50百分位數(shù);(2)先利用分層抽樣求出男、女生的人數(shù),利用古典概型求概率.【小問1詳解】,由,解得設(shè)該次知識競賽成績的第50百分位數(shù)為x,則,解得:.即該次知識競賽成績的第50百分位數(shù)為【小問2詳解】由頻率分布直方圖可知:分?jǐn)?shù)在)的人數(shù)有人,所以這人中,女生有人,記為、,男生有人,記為、、、從這人中隨機選取人,基本事件為:、、、、、、、、、、、、、、,共種不同取法;則至少有人是女生的基本事件為、、、、、、、、,共種不同取法,則所求的概率為18、(1)(2)【解析】(1)利用兩點間距離公式求得P到橢圓的左右焦點的距離,然后根據(jù)橢圓的定義得到a的值,結(jié)合c的值,利用a,b,c的平方關(guān)系求得的值,再結(jié)合焦點位置,寫出橢圓的標(biāo)準(zhǔn)方程(2)利用向量的數(shù)量積,求得點滿足的條件,再結(jié)合橢圓的方程,解得的值【小問1詳解】解:設(shè)橢圓的長半軸長為a,短半軸長為b,半焦距為c,因為所以,即,又因為c=2,所以,又因為橢圓的中心在原點,焦點在x軸上,所以該橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:因為,所以,即,又,所以,即.19、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無極小值(2)【解析】(1)利用導(dǎo)數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導(dǎo)數(shù)求出的最大值即可求解.【小問1詳解】當(dāng)時,,定義域為,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減∴當(dāng)時,取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無極小值【小問2詳解】由,得,令,只需.求導(dǎo)得,所以當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴當(dāng)時,取得最大值,∴k的取值范圍為20、(1)(2)恒過點【解析】(1)設(shè)為橢圓上的點,根據(jù)橢圓的性質(zhì)得到,再根據(jù)的取值范圍,得到,再根據(jù)離心率求出、,最后根據(jù),求出,即可得解;(2)設(shè)、,表示出、,聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,由,即可得到,再根據(jù),即可得到,從而得到,再將、代入計算可得;【小問1詳解】解:設(shè)為橢圓上的點,為橢圓的右焦點,所以,因為,所以,又,所以、,因為,所以,所以橢圓方程為;【小問2詳解】解:設(shè)、,依題意可得、,所以、,聯(lián)立得,則即,所以、,因為,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,當(dāng)時直線過點,故舍去,所以,則直線恒過點;21、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點,然后以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空間向量法可求得與平面所成角的正弦值.【小問1詳解】解:設(shè),則為、的中點,連接、,因為平面,平面,平面平面,則,因為為的中點,則為的中點,因為,為的中點,則,同理可證,,平面,,,則,,以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,.由圖可知,二面角的平面角為銳角,因此,二面角的余弦值為.【小問2詳解】解:,,,因此,與所成角的余弦值為.【小問3詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 管道工程未來市場需求演變趨勢與挑戰(zhàn)預(yù)測考核試卷
- 木結(jié)構(gòu)建筑的智能家居系統(tǒng)集成考核試卷
- 糧食倉儲企業(yè)綠色經(jīng)濟企業(yè)文化建設(shè)考核試卷
- 帶式輸送機設(shè)計
- 秋游活動方案
- 《幼兒繪畫秋天》課件
- 2025年公共營養(yǎng)師之二級營養(yǎng)師考前沖刺模擬試卷A卷含答案
- 中學(xué)生課前三分安全教育
- 蛋糕促銷活動方案
- 小學(xué)一年級文明就餐教育
- 人教版數(shù)學(xué)三年級(下冊)面積 練習(xí)十三
- MOOC 工程圖學(xué)-中國礦業(yè)大學(xué) 中國大學(xué)慕課答案
- 雪鐵龍DS 5LS說明書
- (2024版)小學(xué)六年級數(shù)學(xué)考試新題型與答題技巧解析
- 足球公園計劃書
- 2024年高等教育經(jīng)濟類自考-00100國際運輸與保險筆試歷年真題薈萃含答案
- 玻璃清潔機器人的研發(fā)-吸附機構(gòu)設(shè)計
- 藝術(shù)留學(xué)作品集合同模板
- 2024-2025年上海中考英語真題及答案解析
- GB/T 19510.213-2023光源控制裝置第2-13部分:LED模塊用直流或交流電子控制裝置的特殊要求
評論
0/150
提交評論