




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省威海乳山市2023-2024學(xué)年中考五模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.過(guò)正方體中有公共頂點(diǎn)的三條棱的中點(diǎn)切出一個(gè)平面,形成如圖幾何體,其正確展開(kāi)圖正確的為()A. B. C. D.2.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個(gè)數(shù)是()A.4 B.3 C.2 D.13.下列圖標(biāo)中,是中心對(duì)稱圖形的是()A. B.C. D.4.已知一組數(shù)據(jù)2、x、8、1、1、2的眾數(shù)是2,那么這組數(shù)據(jù)的中位數(shù)是()A.3.1;B.4;C.2;D.6.1.5.下列運(yùn)算正確的是()A.4x+5y=9xy B.(?m)3?m7=m10C.(x3y)5=x8y5 D.a(chǎn)12÷a8=a46.將拋物線y=x2﹣x+1先向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,則所得拋物線的表達(dá)式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+47.下面的幾何圖形是由四個(gè)相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.8.一次函數(shù)滿足,且y隨x的增大而減小,則此函數(shù)的圖像一定不經(jīng)過(guò)()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如圖,在中,,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,則長(zhǎng)的最大值與最小值的和是()A. B. C. D.10.若點(diǎn)P(﹣3,y1)和點(diǎn)Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,則y1與y2的大小關(guān)系為()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),DE∥AC,若S△BDE:S△CDE=1:3,則BE:BC的值為_(kāi)________.12.如圖,邊長(zhǎng)一定的正方形ABCD,Q是CD上一動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過(guò)M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.13.如圖,AB∥CD,BE交CD于點(diǎn)D,CE⊥BE于點(diǎn)E,若∠B=34°,則∠C的大小為_(kāi)_______度.14.在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象如圖所示,根據(jù)圖中提供的信息,有下列說(shuō)法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時(shí),兩人行程均為10km;③出發(fā)后1.5小時(shí),甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的有_____個(gè).15.如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_(kāi)____.16.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.三、解答題(共8題,共72分)17.(8分)如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)D作BC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長(zhǎng).18.(8分)某數(shù)學(xué)教師為了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)該班部分學(xué)生進(jìn)行了一學(xué)期的跟蹤調(diào)查,將調(diào)查結(jié)果分為四類并給出相應(yīng)分?jǐn)?shù),A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為,圖②中的m值為;(Ⅱ)求樣本中分?jǐn)?shù)值的平均數(shù)、眾數(shù)和中位數(shù).19.(8分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.20.(8分)如圖,點(diǎn)D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.21.(8分)綜合與實(shí)踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習(xí)完特殊的平行四邊形之后,某學(xué)習(xí)小組針對(duì)矩形中的折疊問(wèn)題進(jìn)行了研究.問(wèn)題背景:在矩形ABCD中,點(diǎn)E、F分別是BC、AD上的動(dòng)點(diǎn),且BE=DF,連接EF,將矩形ABCD沿EF折疊,點(diǎn)C落在點(diǎn)C′處,點(diǎn)D落在點(diǎn)D′處,射線EC′與射線DA相交于點(diǎn)M.猜想與證明:(1)如圖1,當(dāng)EC′與線段AD交于點(diǎn)M時(shí),判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),請(qǐng)?jiān)趫D2中作出此時(shí)的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標(biāo)注相應(yīng)的字母);操作與探究:(3)如圖3,當(dāng)點(diǎn)M在線段DA延長(zhǎng)線上時(shí),線段C′D'分別與AD,AB交于P,N兩點(diǎn)時(shí),C′E與AB交于點(diǎn)Q,連接MN并延長(zhǎng)MN交EF于點(diǎn)O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點(diǎn)E由點(diǎn)B運(yùn)動(dòng)到點(diǎn)C的過(guò)程中,點(diǎn)D'所經(jīng)過(guò)的路徑的長(zhǎng)為.22.(10分)如圖,△ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;以原點(diǎn)O為位似中心,將△A1B1C1放大為原來(lái)的2倍,得到△A2B2C2,請(qǐng)?jiān)诘谌笙迌?nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.23.(12分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點(diǎn).求反比例函數(shù)的表達(dá)式在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)求△PAB的面積.24.城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:選項(xiàng)折疊后都不符合題意,只有選項(xiàng)折疊后兩個(gè)剪去三角形與另一個(gè)剪去的三角形交于一個(gè)頂點(diǎn),與正方體三個(gè)剪去三角形交于一個(gè)頂點(diǎn)符合.故選B.2、B【解析】試題分析:由拋物線開(kāi)口方向得a<0,由拋物線的對(duì)稱軸位置可得b>0,由拋物線與y軸的交點(diǎn)位置可得c>0,則可對(duì)①進(jìn)行判斷;根據(jù)拋物線與x軸的交點(diǎn)個(gè)數(shù)得到b2﹣4ac>0,加上a<0,則可對(duì)②進(jìn)行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對(duì)③進(jìn)行判斷;設(shè)A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點(diǎn)問(wèn)題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對(duì)④進(jìn)行判斷.解:∵拋物線開(kāi)口向下,∴a<0,∵拋物線的對(duì)稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點(diǎn)在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個(gè)交點(diǎn),∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯(cuò)誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設(shè)A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點(diǎn):二次函數(shù)圖象與系數(shù)的關(guān)系.3、B【解析】
根據(jù)中心對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、是中心對(duì)稱圖形,故本選項(xiàng)正確;C、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選B.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的概念:中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.4、A【解析】∵數(shù)據(jù)組2、x、8、1、1、2的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)按從小到大排列為:2、2、2、1、1、8,∴這組數(shù)據(jù)的中位數(shù)是:(2+1)÷2=3.1.故選A.5、D【解析】
各式計(jì)算得到結(jié)果,即可作出判斷.【詳解】解:A、4x+5y=4x+5y,錯(cuò)誤;B、(-m)3?m7=-m10,錯(cuò)誤;C、(x3y)5=x15y5,錯(cuò)誤;D、a12÷a8=a4,正確;故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.6、A【解析】
先將拋物線解析式化為頂點(diǎn)式,左加右減的原則即可.【詳解】y=x當(dāng)向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得y=x-故選A.【點(diǎn)睛】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點(diǎn)式進(jìn)行;7、C【解析】試題分析:觀察可得,只有選項(xiàng)C的主視圖和左視圖相同,都為,故答案選C.考點(diǎn):簡(jiǎn)單幾何體的三視圖.8、C【解析】
y隨x的增大而減小,可得一次函數(shù)y=kx+b單調(diào)遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數(shù)y=kx+b單調(diào)遞減,∴k<0,∵kb<0,∴b>0,∴直線經(jīng)過(guò)第二、一、四象限,不經(jīng)過(guò)第三象限,故選C.【點(diǎn)睛】本題考查了一次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)y=kx+b(k≠0,k、b是常數(shù))的圖象和性質(zhì)是解題的關(guān)鍵.9、C【解析】
如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2最大值=5+3=8,由此不難解決問(wèn)題.【詳解】解:如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2經(jīng)過(guò)圓心,經(jīng)過(guò)圓心的弦最長(zhǎng),P2Q2最大值=5+3=8,∴PQ長(zhǎng)的最大值與最小值的和是1.故選:C.【點(diǎn)睛】本題考查切線的性質(zhì)、三角形中位線定理等知識(shí),解題的關(guān)鍵是正確找到點(diǎn)PQ取得最大值、最小值時(shí)的位置,屬于中考??碱}型.10、A【解析】
分別將點(diǎn)P(﹣3,y1)和點(diǎn)Q(﹣1,y2)代入正比例函數(shù)y=﹣k2x,求出y1與y2的值比較大小即可.【詳解】∵點(diǎn)P(﹣3,y1)和點(diǎn)Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案選A.【點(diǎn)睛】本題考查了正比例函數(shù),解題的關(guān)鍵是熟練的掌握正比例函數(shù)的知識(shí)點(diǎn).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1:4【解析】
由S△BDE:S△CDE=1:3,得到
,于是得到
.【詳解】解:兩個(gè)三角形同高,底邊之比等于面積比.故答案為【點(diǎn)睛】本題考查了三角形的面積,比例的性質(zhì)等知識(shí),知道等高不同底的三角形的面積的比等于底的比是解題的關(guān)鍵.12、①②③④【解析】①如圖1,作AU⊥NQ于U,交BD于H,連接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四點(diǎn)共圓,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴點(diǎn)U在NQ上,有BN+DQ=QU+UN=NQ;④如圖2,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點(diǎn)M是對(duì)角線BD上的點(diǎn),∴四邊形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴.故答案為:①②③④點(diǎn)睛:本題考查了正方形的性質(zhì),四點(diǎn)共圓的判定,圓周角定理,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì);熟練掌握正方形的性質(zhì),正確作出輔助線并運(yùn)用有關(guān)知識(shí)理清圖形中西安段間的關(guān)系,證明三角形全等是解決問(wèn)題的關(guān)鍵.13、56【解析】
解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.14、1【解析】試題解析:在兩人出發(fā)后0.5小時(shí)之前,甲的速度小于乙的速度,0.5小時(shí)到1小時(shí)之間,甲的速度大于乙的速度,故①錯(cuò)誤;由圖可得,兩人在1小時(shí)時(shí)相遇,行程均為10km,故②正確;甲的圖象的解析式為y=10x,乙AB段圖象的解析式為y=4x+6,因此出發(fā)1.5小時(shí)后,甲的路程為15千米,乙的路程為12千米,甲的行程比乙多3千米,故③正確;甲到達(dá)終點(diǎn)所用的時(shí)間較少,因此甲比乙先到達(dá)終點(diǎn),故④正確.15、(2,3)【解析】
作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,證明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結(jié)果.【詳解】如圖,作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,∵點(diǎn)A、B的坐標(biāo)分別為(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴點(diǎn)A′的坐標(biāo)為(2,3).故答案為(2,3).【點(diǎn)睛】此題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),點(diǎn)的坐標(biāo)的確定.解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造全等三角形.16、2.【解析】
由tan∠CBD==設(shè)CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設(shè)CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【點(diǎn)睛】本題考查線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),勾股定理的應(yīng)用,解題關(guān)鍵是熟記性質(zhì)與定理并準(zhǔn)確識(shí)圖.三、解答題(共8題,共72分)17、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)CP=16.9cm.【解析】【分析】(1)先判斷出∠BAC=2∠BAD,進(jìn)而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結(jié)論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結(jié)論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結(jié)論.【詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【點(diǎn)睛】本題考查了切線的判定、相似三角形的判定與性質(zhì)等,熟練掌握切線的判定方法、相似三角形的判定與性質(zhì)定理是解題的關(guān)鍵.18、(Ⅰ)25、40;(Ⅱ)平均數(shù)為68.2分,眾數(shù)為75分,中位數(shù)為75分.【解析】
(1)由直方圖可知A的總?cè)藬?shù)為5,再依據(jù)其所占比例20%可求解總?cè)藬?shù);由直方圖中B的人數(shù)為10及總?cè)藬?shù)可知m的值;(2)根據(jù)平均數(shù)、眾數(shù)和中位數(shù)的定義求解即可.【詳解】(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案為:25、40;(Ⅱ)由條形圖知95分的有5人、75分的有10人、60分的有6人、30分的有4人,則樣本分知的平均數(shù)為(分),眾數(shù)為75分,中位數(shù)為第13個(gè)數(shù)據(jù),即75分.【點(diǎn)睛】理解兩幅統(tǒng)計(jì)圖中各數(shù)據(jù)的含義及其對(duì)應(yīng)關(guān)系是解題關(guān)鍵.19、證明見(jiàn)試題解析.【解析】試題分析:首先根據(jù)∠ACD=∠BCE得出∠ACB=∠DCE,結(jié)合已知條件利用SAS判定△ABC和△DEC全等,從而得出答案.試題解析:∵∠ACD=∠BCE∴∠ACB=∠DCE又∵AC=DCBC=EC∴△ABC≌△DEC∴∠A=∠D考點(diǎn):三角形全等的證明20、見(jiàn)解析【解析】試題分析:依據(jù)題意,可通過(guò)證△ABC≌△EFD來(lái)得出AB=EF的結(jié)論,兩三角形中,已知的條件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根據(jù)AAS判定兩三角形全等解題.
證明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC與△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.21、(1)△MEF是等腰三角形(2)見(jiàn)解析(3)證明見(jiàn)解析(4)【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進(jìn)而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對(duì)稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進(jìn)而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點(diǎn)D'所經(jīng)過(guò)的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點(diǎn)D'所經(jīng)過(guò)的路徑的長(zhǎng).【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點(diǎn)E由點(diǎn)B運(yùn)動(dòng)到點(diǎn)C的過(guò)程中,點(diǎn)D'所經(jīng)過(guò)的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長(zhǎng)為L(zhǎng)=.故答案為.【點(diǎn)睛】此題是四邊形綜合題,主要考查了折疊問(wèn)題與菱形的判定與性質(zhì)、弧長(zhǎng)計(jì)算公式,等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,熟練掌握等腰三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.22、(1)見(jiàn)解析;(2)圖見(jiàn)解析;.【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于y軸的對(duì)稱點(diǎn)A1、B1、C1的位置,然后順次連接即可.(2)連接A1O并延長(zhǎng)至A2,使A2O=2A1O,連接B1O并延長(zhǎng)至B2,使B2O=2B1O,連接C1O并延長(zhǎng)至C2,使C2O=2C1O,然后順次連接即可,再根據(jù)相似三角形面積的比等于相似比的平方解答.【詳解】解:(1)△A1B1C1如圖所示.(2)△A2B2C2如圖所示.∵△A1B1C1放大為原來(lái)的2倍得到△A2B2C2,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《行業(yè)會(huì)計(jì)實(shí)務(wù)》課件-項(xiàng)目三 3.3臨時(shí)設(shè)施的核算
- 重慶市名校聯(lián)盟2024-2025學(xué)年高二下學(xué)期4月第一次聯(lián)合考試化學(xué)試卷(含答案)
- 小兒擴(kuò)張型心肌病的臨床護(hù)理
- 2025贈(zèng)與合同公證樣本
- 2025倉(cāng)儲(chǔ)保管合同范本3
- 浙江國(guó)企招聘2025寧波大通開(kāi)發(fā)有限公司招聘6人筆試參考題庫(kù)附帶答案詳解
- 2025年股票交易授權(quán)代理合同
- 2025年初級(jí)銀行從業(yè)資格之初級(jí)個(gè)人貸款通關(guān)考試題庫(kù)帶答案解析
- 2025年初級(jí)經(jīng)濟(jì)師之初級(jí)建筑與房地產(chǎn)經(jīng)濟(jì)綜合檢測(cè)試卷B卷含答案
- 發(fā)力新質(zhì)生產(chǎn)力
- 北師大版四年級(jí)下冊(cè)小數(shù)乘法豎式計(jì)算練習(xí)100題及答案
- 2024年湖南省長(zhǎng)沙市中考地理試卷真題(含答案解析)
- 《中國(guó)健康成年人身體活動(dòng)能量消耗參考值》(編制說(shuō)明)
- 食堂大米采購(gòu)招標(biāo)文件
- 醫(yī)療美容診所規(guī)章制度上墻
- CJT 216-2013 給水排水用軟密封閘閥
- CJ-T250-2018建筑排水用高密度聚乙烯(HDPE)管材及管件
- 大學(xué)遺傳學(xué)期末考試題庫(kù)和答案
- 2024注冊(cè)信息安全專業(yè)人員CISP培訓(xùn)講義全集
- 心臟介入術(shù)后穿刺部位并發(fā)癥的預(yù)防及護(hù)理講解
- DB64 1996-2024 燃煤電廠大氣污染物排放標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論