安徽省碭山縣2024屆中考數學押題試卷含解析_第1頁
安徽省碭山縣2024屆中考數學押題試卷含解析_第2頁
安徽省碭山縣2024屆中考數學押題試卷含解析_第3頁
安徽省碭山縣2024屆中考數學押題試卷含解析_第4頁
安徽省碭山縣2024屆中考數學押題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省碭山縣2024屆中考數學押題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±202.計算的結果是()A.1 B.-1 C. D.3.下列圖案中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.4.如圖,彈性小球從點P(0,1)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第1次碰到正方形的邊時的點為P1(2,0),第2次碰到正方形的邊時的點為P2,…,第n次碰到正方形的邊時的點為Pn,則點P2018的坐標是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)5.已知關于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或6.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數法表示這個數是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1067.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價降價20%,現售價為a元,則原售價為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.458.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐9.若二次函數的圖象與軸有兩個交點,坐標分別是(x1,0),(x2,0),且.圖象上有一點在軸下方,則下列判斷正確的是()A. B. C. D.10.一個多邊形的內角和比它的外角和的倍少180°,那么這個多邊形的邊數是()A.7 B.8 C.9 D.1011.如圖,數軸上的A、B、C、D四點中,與數﹣表示的點最接近的是()A.點A B.點B C.點C D.點D12.如圖,AB與⊙O相切于點B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.正十二邊形每個內角的度數為.14.一個圓錐的母線長為5cm,底面半徑為1cm,那么這個圓錐的側面積為_____cm1.15.如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.16.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.17.因式分解:x2﹣3x+(x﹣3)=_____.18.二次函數的圖象與x軸有____個交點

.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一輛汽車,新車購買價30萬元,第一年使用后折舊,以后該車的年折舊率有所變化,但它在第二、三年的年折舊率相同.已知在第三年年末,這輛車折舊后價值為萬元,求這輛車第二、三年的年折舊率.20.(6分)某校九年級數學測試后,為了解學生學習情況,隨機抽取了九年級部分學生的數學成績進行統(tǒng)計,得到相關的統(tǒng)計圖表如下.成績/分120﹣111110﹣101100﹣9190以下成績等級ABCD請根據以上信息解答下列問題:(1)這次統(tǒng)計共抽取了名學生的數學成績,補全頻數分布直方圖;(2)若該校九年級有1000名學生,請據此估計該校九年級此次數學成績在B等級以上(含B等級)的學生有多少人?(3)根據學習中存在的問題,通過一段時間的針對性復習與訓練,若A等級學生數可提高40%,B等級學生數可提高10%,請估計經過訓練后九年級數學成績在B等級以上(含B等級)的學生可達多少人?21.(6分)桌面上放有4張卡片,正面分別標有數字1,2,3,4,這些卡片除數字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數字,然后將這兩數相加.(1)請用列表或畫樹狀圖的方法求兩數和為5的概率;(2)若甲與乙按上述方式做游戲,當兩數之和為5時,甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個游戲對雙方公平?22.(8分)小李在學習了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:他認為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應該成立.即如圖①,在中,是邊上的中線,若,求證:.如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結論)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數量關系.23.(8分)重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據圖中提供的信息完成以下問題.扇形統(tǒng)計圖中九年級參賽作文篇數對應的圓心角是度,并補全條形統(tǒng)計圖;經過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在???,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在校刊上的概率.24.(10分)如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當燈罩的軸線CO通過公路路面的中心線時照明效果最好.此時,路燈的燈柱AB的高應該設計為多少米.(結果保留根號)25.(10分)如圖1,在平面直角坐標系xOy中,拋物線y=ax2+bx﹣與x軸交于點A(1,0)和點B(﹣3,0).繞點A旋轉的直線l:y=kx+b1交拋物線于另一點D,交y軸于點C.(1)求拋物線的函數表達式;(2)當點D在第二象限且滿足CD=5AC時,求直線l的解析式;(3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標為4,點Q在拋物線上,當直線l與y軸的交點C位于y軸負半軸時,是否存在以點A,D,P,Q為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標;若不存在,請說明理由.26.(12分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;(3)連接ME,并直接寫出EM的長.27.(12分)如圖,兒童游樂場有一項射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個頂點為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點P坐標(n,0)(1)點C坐標為;(2)求出小球飛行中最高點N的坐標(用含有n的代數式表示);(3)驗證:隨著n的變化,拋物線的頂點在函數y=x2的圖象上運動;(4)若小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐,請直接寫出n的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據完全平方式的特點求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點睛】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.2、C【解析】

原式通分并利用同分母分式的減法法則計算,即可得到結果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.3、B【解析】

根據軸對稱圖形與中心對稱圖形的概念解答.【詳解】A.不是軸對稱圖形,是中心對稱圖形;B.是軸對稱圖形,是中心對稱圖形;C.不是軸對稱圖形,也不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.4、D【解析】

先根據反射角等于入射角先找出前幾個點,直至出現規(guī)律,然后再根據規(guī)律進行求解.【詳解】由分析可得p(0,1)、、、、、、等,故該坐標的循環(huán)周期為7則有則有,故是第2018次碰到正方形的點的坐標為(4,1).【點睛】本題主要考察規(guī)律的探索,注意觀察規(guī)律是解題的關鍵.5、A【解析】

根據方程有兩個相等的實數根結合根的判別式即可得出關于k的方程,解之即可得出結論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數根”是解題的關鍵.6、C【解析】解:,故選C.7、C【解析】

根據題意列出代數式,化簡即可得到結果.【詳解】根據題意得:a÷(1?20%)=a÷45=5故答案選:C.【點睛】本題考查的知識點是列代數式,解題的關鍵是熟練的掌握列代數式.8、D【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂的圓心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力以及對立體圖形的認識.9、D【解析】

根據拋物線與x軸有兩個不同的交點,根的判別式△>0,再分a>0和a<0兩種情況對C、D選項討論即可得解.【詳解】A、二次函數y=ax2+bx+c(a≠0)的圖象與x軸有兩個交點無法確定a的正負情況,故本選項錯誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項錯誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項錯誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號,∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項正確.10、A【解析】

設這個正多邊形的邊數是n,就得到方程,從而求出邊數,即可求出答案.【詳解】設這個多邊形的邊數為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內角與外角的知識點,此題要結合多邊形的內角和與外角和,根據題目中的等量關系,構建方程求解即可.11、B【解析】

,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.12、B【解析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長為=π.故選B.點睛:此題考查了切線的性質,含30度直角三角形的性質,以及弧長公式,熟練掌握切線的性質是解答本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

首先求得每個外角的度數,然后根據外角與相鄰的內角互為鄰補角即可求解.【詳解】試題分析:正十二邊形的每個外角的度數是:=30°,則每一個內角的度數是:180°﹣30°=150°.故答案為150°.14、【解析】分析:根據圓錐的側面展開圖為扇形,先計算出圓錐的底面圓的周長,然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長=1π?5=10π,∴圓錐的側面積=?10π?1=10π(cm1).故答案為10π.點睛:本題考查了圓錐的側面積的計算:圓錐的側面展開圖為扇形,扇形的弧長為圓錐的底面周長,扇形的半徑為圓錐的母線長.也考查了扇形的面積公式:S=?l?R,(l為弧長).15、1.【解析】

連接AF,由E是CD的中點、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,則可證△ABF≌△FCE,進一步可得到△AFE是等腰直角三角形,則∠AEF=45°.【詳解】解:連接AF,∵E是CD的中點,∴CE=,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,FC=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案為:1.【點睛】本題結合三角形全等考查了三角函數的知識.16、2【解析】

根據勾股定理可以得出AB的長度,從而得知CD的長度,再根據旋轉的性質可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點睛】本題考查的是勾股定理、直角三角形斜邊中點的性質和旋轉的性質,能夠根據勾股定理求出AB的長是解題的關鍵.17、(x-3)(x+1);【解析】根據因式分解的概念和步驟,可先把原式化簡,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前兩項提公因式,然后再把x-3看做整體提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案為(x﹣3)(x+1).點睛:此題主要考查了因式分解,關鍵是明確因式分解是把一個多項式化為幾個因式積的形式.再利用因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),進行分解因式即可.18、2【解析】【分析】根據一元二次方程x2+mx+m-2=0的根的判別式的符號進行判定二次函數y=x2+mx+m-2的圖象與x軸交點的個數.【詳解】二次函數y=x2+mx+m-2的圖象與x軸交點的縱坐標是零,即當y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實數根,即二次函數y=x2+mx+m-2的圖象與x軸有2個交點,故答案為:2.【點睛】本題考查了拋物線與x軸的交點.二次函數y=ax2+bx+c(a,b,c是常數,a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關系.△=b2-4ac決定拋物線與x軸的交點個數.△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、這輛車第二、三年的年折舊率為.【解析】

設這輛車第二、三年的年折舊率為x,則第二年這就后的價格為30(1-20%)(1-x)元,第三年折舊后的而價格為30(1-20%)(1-x)2元,與第三年折舊后的價格為17.34萬元建立方程求出其解即可.【詳解】設這輛車第二、三年的年折舊率為,依題意,得整理得,解得,.因為折舊率不可能大于1,所以不合題意,舍去.所以答:這輛車第二、三年的年折舊率為.【點睛】本題是一道折舊率問題,考查了列一元二次方程解實際問題的運用,解答本題時設出折舊率,表示出第三年的折舊后價格并運用價格為11.56萬元建立方程是關鍵.20、(1)1人;補圖見解析;(2)10人;(3)610名.【解析】

(1)用總人數乘以A所占的百分比,即可得到總人數;再用總人數乘以A等級人數所占比例可得其人數,繼而根據各等級人數之和等于總人數可得D等級人數,據此可補全條形圖;

(2)用總人數乘以(A的百分比+B的百分比),即可解答;

(3)先計算出提高后A,B所占的百分比,再乘以總人數,即可解答.【詳解】解:(1)本次調查抽取的總人數為15÷=1(人),則A等級人數為1×=10(人),D等級人數為1﹣(10+15+5)=20(人),補全直方圖如下:故答案為1.(2)估計該校九年級此次數學成績在B等級以上(含B等級)的學生有1000×=10(人);(3)∵A級學生數可提高40%,B級學生數可提高10%,∴B級學生所占的百分比為:30%×(1+10%)=33%,A級學生所占的百分比為:20%×(1+40%)=28%,∴1000×(33%+28%)=610(人),∴估計經過訓練后九年級數學成績在B以上(含B級)的學生可達610名.【點睛】考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、(1)詳見解析;(2)4分.【解析】

(1)根據題意用列表法求出答案;(2)算出甲乙獲勝的概率,從而求出乙勝一次的得分.【詳解】(1)列表如下:由列表可得:P(數字之和為5)=,(2)因為P(甲勝)=,P(乙勝)=,∴甲勝一次得12分,要使這個游戲對雙方公平,乙勝一次得分應為:12÷3=4分.【點睛】本題考查概率問題中的公平性問題,解決本題的關鍵是計算出各種情況的概率,然后比較即可.22、(1)詳見解析;(2)詳見解析;(3)【解析】

(1)利用等腰三角形的性質和三角形內角和即可得出結論;

(2)先判斷出OE=AC,即可得出OE=BD,即可得出結論;

(3)先判斷出△ABE是底角是30°的等腰三角形,即可構造直角三角形即可得出結論.【詳解】(1)∵AD=BD,

∴∠B=∠BAD,

∵AD=CD,

∴∠C=∠CAD,

在△ABC中,∠B+∠C+∠BAC=180°,

∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°

∴∠B+∠C=90°,

∴∠BAC=90°,(2)如圖②,連接與,交點為,連接四邊形是矩形(3)如圖3,過點做于點四邊形是矩形,是等邊三角形,由(2)知,在中,,【點睛】此題是四邊形綜合題,主要考查了矩形是性質,直角三角形的性質和判定,含30°角的直角三角形的性質,三角形的內角和公式,解(1)的關鍵是判斷出∠B=∠BAD,解(2)的關鍵是判斷出OE=AC,解(3)的關鍵是判斷出△ABE是底角為30°的等腰三角形,進而構造直角三角形.23、【解析】

試題分析:(1)求出總的作文篇數,即可得出九年級參賽作文篇數對應的圓心角的度數,求出八年級的作文篇數,補全條形統(tǒng)計圖即可;(2)設四篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文,用畫樹狀法即可求得結果.試題解析:(1)20÷20%=100,九年級參賽作文篇數對應的圓心角=360°×=126°;100﹣20﹣35=45,補全條形統(tǒng)計圖如圖所示:(2)假設4篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文.畫樹狀圖法:共有12種可能的結果,七年級特等獎作文被選登在??系慕Y果有6種,∴P(七年級特等獎作文被選登在??希?.考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.列表法與畫樹狀圖法.24、(10-4)米【解析】

延長OC,AB交于點P,△PCB∽△PAO,根據相似三角形對應邊比例相等的性質即可解題.【詳解】解:如圖,延長OC,AB交于點P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC?tan60°=米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴,∴PA===米,∴AB=PA﹣PB=()米.答:路燈的燈柱AB高應該設計為()米.25、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當x=﹣2時,最大值為;(4)存在,點D的橫坐標為﹣3或或﹣.【解析】

(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【詳解】(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數的表達式為:①;(2)過點D作DF⊥x軸交于點F,過點E作y軸的平行線交直線AD于點M,∵OC∥DF,∴OF=5OA=5,故點D的坐標為(﹣5,6),將點A、D的坐標代入一次函數表達式:y=mx+n得:,解得:即直線AD的表達式為:y=﹣x+1,(3)設點E坐標為則點M坐標為則∵故S△ACE有最大值,當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論