廣東省佛山市佛山三中2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第1頁
廣東省佛山市佛山三中2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第2頁
廣東省佛山市佛山三中2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第3頁
廣東省佛山市佛山三中2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第4頁
廣東省佛山市佛山三中2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省佛山市佛山三中2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.以拋物線C的頂點(diǎn)為圓心的圓交C于A、B兩點(diǎn),交C的準(zhǔn)線于D、E兩點(diǎn).已知|AB|=,|DE|=,則C的焦點(diǎn)到準(zhǔn)線的距離為()A.2 B.4 C.6 D.82.設(shè)為數(shù)列的前項(xiàng)和,,則的值為()A. B. C. D.不確定3.三條線段的長分別為5,6,8,則用這三條線段A.能組成直角三角形 B.能組成銳角三角形C.能組成鈍角三角形 D.不能組成三角形4.已知兩條直線與兩個平面,給出下列命題:①若,則;②若,則;③若,則;④若,則;其中正確的命題個數(shù)為A.1 B.2 C.3 D.45.若,則函數(shù)的最小值是()A. B. C. D.6.sin300°的值為A. B. C. D.7.若復(fù)數(shù)(是虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)的值為()A. B. C. D.8.如果a<b<0,則下列不等式成立的是()A. B.a(chǎn)2<b2 C.a(chǎn)3<b3 D.a(chǎn)c2<bc29.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.13 B.15 C.40 D.4610.一枚骰子連續(xù)投兩次,則兩次向上點(diǎn)數(shù)均為1的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列{an}滿足a1=2,a12.把數(shù)列的所有數(shù)按照從大到小的原則寫成如下數(shù)表:第行有個數(shù),第行的第個數(shù)(從左數(shù)起)記為,則________.13.在數(shù)列an中,a1=2,a14.若關(guān)于的不等式的解集為,則__________15.如圖,二面角等于,、是棱上兩點(diǎn),、分別在半平面、內(nèi),,,且,則的長等于______.16.已知,函數(shù)的最小值為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的反函數(shù);(2)解方程:.18.為了解學(xué)生的學(xué)習(xí)情況,某學(xué)校在一次考試中隨機(jī)抽取了20名學(xué)生的成績,分成[50,60),[60,70),[70,80),[80,90),[90,100]五組,繪制了如圖所示頻率分布直方圖.求:(Ⅰ)圖中m的值;(II)估計全年級本次考試的平均分;(III)若從樣本中隨機(jī)抽取分?jǐn)?shù)在[80,100]的學(xué)生兩名,求所抽取兩人至少有一人分?jǐn)?shù)不低于90分的概率.19.在平面直角坐標(biāo)系xOy中,已知點(diǎn),,,.(1)①證明:;②證明:存在點(diǎn)P使得.并求出P的坐標(biāo);(2)過C點(diǎn)的直線將四邊形ABCD分成周長相等的兩部分,產(chǎn)生的另一個交點(diǎn)為E,求點(diǎn)E的坐標(biāo).20.已知數(shù)列中,..(1)寫出、、;(2)猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明.21.已知數(shù)列滿足,,設(shè).(1)求,,;(2)證明:數(shù)列是等比數(shù)列,并求數(shù)列和的通項(xiàng)公式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

如圖,設(shè)拋物線方程為,交軸于點(diǎn),則,即點(diǎn)縱坐標(biāo)為,則點(diǎn)橫坐標(biāo)為,即,由勾股定理知,,即,解得,即的焦點(diǎn)到準(zhǔn)線的距離為4,故選B.【點(diǎn)睛】2、C【解析】

令,由求出的值,再令時,由得出,兩式相減可推出數(shù)列是等比數(shù)列,求出該數(shù)列的公比,再利用等比數(shù)列求和公式可求出的值.【詳解】當(dāng)時,,得;當(dāng)時,由得出,兩式相減得,可得.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,因此,.故選:C.【點(diǎn)睛】本題考查利用前項(xiàng)和求數(shù)列通項(xiàng),同時也考查了等比數(shù)列求和,在遞推公式中涉及與時,可利用公式求解出,也可以轉(zhuǎn)化為來求解,考查推理能力與計算能力,屬于中等題.3、C【解析】

先求最大角的余弦,再得到三角形是鈍角三角形.【詳解】設(shè)最大角為,所以,所以三角形是鈍角三角形.故選C【點(diǎn)睛】本題主要考查余弦定理,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.4、A【解析】

結(jié)合線面平行定理和舉例判斷.【詳解】若,則可能平行或異面,故①錯誤;若,則可能與的交線平行,故②錯誤;若,則,所以,故③正確;若,則可能平行,相交或異面,故④錯誤;故選A.【點(diǎn)睛】本題線面關(guān)系的判斷,主要依據(jù)線面定理和舉例排除.5、B【解析】

直接用均值不等式求最小值.【詳解】當(dāng)且僅當(dāng),即時,取等號.故選:B【點(diǎn)睛】本題考查利用均值不等式求函數(shù)最小值,屬于基礎(chǔ)題.6、B【解析】

利用誘導(dǎo)公式化簡,再求出值為.【詳解】因?yàn)?,故選B.【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,即終邊相同角的三角函數(shù)值相等及.7、C【解析】,且是純虛數(shù),,故選C.8、C【解析】

根據(jù)a、b的范圍,取特殊值帶入判斷即可.【詳解】∵a<b<0,不妨令a=﹣2,b=﹣1,則,a2>b2所以A、B不成立,當(dāng)c=0時,ac2=bc2所以D不成立,故選:C.【點(diǎn)睛】本題考查了不等式的性質(zhì),考查特殊值法進(jìn)行排除的應(yīng)用,屬于基礎(chǔ)題.9、A【解析】

模擬程序運(yùn)行即可.【詳解】程序運(yùn)行循環(huán)時,變量值為,不滿足;,不滿足;,滿足,結(jié)束循環(huán),輸出.故選A.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時可模擬程序運(yùn)行,觀察變量值的變化,判斷是否符合循環(huán)條件即可.10、D【解析】

連續(xù)投兩次骰子共有36種,求出滿足情況的個數(shù),即可求解.【詳解】一枚骰子投一次,向上的點(diǎn)數(shù)有6種,則連續(xù)投兩次骰子共有36種,兩次向上點(diǎn)數(shù)均為1的有1種情況,概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2×【解析】

判斷數(shù)列是等比數(shù)列,然后求出通項(xiàng)公式.【詳解】數(shù)列{an}中,a可得數(shù)列是等比數(shù)列,等比為3,an故答案為:2×3【點(diǎn)睛】本題考查等比數(shù)列的判斷以及通項(xiàng)公式的求法,考查計算能力.12、【解析】

第行有個數(shù)知每行數(shù)的個數(shù)成等比數(shù)列,要求,先要求出,就必須求出前行一共出現(xiàn)了多少個數(shù),根據(jù)等比數(shù)列的求和公式可求,而由可知,每一行數(shù)的分母成等差數(shù)列,可求出,令,即可求出.【詳解】由第行有個數(shù),可知每一行數(shù)的個數(shù)成等比數(shù)列,首項(xiàng)是,公比是,所以,前行共有個數(shù),所以,第行第一個數(shù)為,,因此,.故答案為:.【點(diǎn)睛】本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意數(shù)陣的應(yīng)用,同時要找出數(shù)陣的規(guī)律,考查推理能力,屬于中等題.13、2+【解析】

因?yàn)閍1∴a∴=(=2+ln14、1【解析】

根據(jù)二次不等式和二次方程的關(guān)系,得到是方程的兩根,由根與系數(shù)的關(guān)系得到的值.【詳解】因?yàn)殛P(guān)于的不等式的解集為所以是方程的兩根,,由根與系數(shù)的關(guān)系得,解得【點(diǎn)睛】本題考查一元二次不等式和一元二次方程之間的關(guān)系,根與系數(shù)之間的關(guān)系,屬于簡單題.15、1【解析】

由已知中二面角α﹣l﹣β等于110°,A、B是棱l上兩點(diǎn),AC、BD分別在半平面α、β內(nèi),AC⊥l,BD⊥l,且AB=AC=BD=1,由,結(jié)合向量數(shù)量積的運(yùn)算,即可求出CD的長.【詳解】∵A、B是棱l上兩點(diǎn),AC、BD分別在半平面α、β內(nèi),AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案為1.【點(diǎn)睛】本題考查的知識點(diǎn)是與二面角有關(guān)的立體幾何綜合題,其中利用,結(jié)合向量數(shù)量積的運(yùn)算,是解答本題的關(guān)鍵.16、5【解析】

變形后利用基本不等式可得最小值.【詳解】∵,∴4x-5>0,∴當(dāng)且僅當(dāng)時,取等號,即時,有最小值5【點(diǎn)睛】本題考查利用基本不等式求最值,湊出可利用基本不等式的形式是解決問題的關(guān)鍵,使用基本不等式時要注意“一正二定三相等”的法則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)反解,然后交換的位置,寫出原函數(shù)的值域即可得到結(jié)果;(2)代入原函數(shù)與反函數(shù)的解析式,解方程即可得到答案.【詳解】(1)由得,得,因?yàn)?,所以,所?(2)由得2,所以,即,解得,所以,所以原方程的解集為.【點(diǎn)睛】本題考查了求反函數(shù)的解析式,考查了指數(shù)式與對數(shù)式的互化,屬于中檔題.18、(I)0.045;(II)75;(III)0.7【解析】

(Ⅰ)根據(jù)頻率之和為1,結(jié)合題中數(shù)據(jù),即可求出結(jié)果;(II)每組的中間值乘以該組頻率,再求和,即可得出結(jié)果;(III)用列舉法列舉出總的基本事件,以及滿足條件的基本事件,基本事件的個數(shù)比即為所求的概率.【詳解】(Ⅰ)由題意可得:(Ⅱ)各組的頻率分別為0.05,0.25,0.45,0.15,0.1,所以可估計全年級的平均分為;(Ⅲ)分?jǐn)?shù)落在[80,90)的人數(shù)有3人,設(shè)為a,b,c,落在[90,100的人數(shù)有2人,設(shè)為A、B,則從中隨機(jī)抽取兩名的結(jié)果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10種,其中至少有一人不低于90分的有7種,故概率為0.7.【點(diǎn)睛】本題主要考查由頻率分布直方圖求參數(shù),以及求均值的問題,同時考查古典概型的問題,熟記古典概型的概率公式,以及均值的求法即可,屬于常考題型.19、(1)①見解析;②見解析,;(2).【解析】

(1)①利用夾角公式可得;②由條件知點(diǎn)為四邊形外接圓的圓心,根據(jù),可得,四邊形外接圓的圓心為的中點(diǎn),然后求出點(diǎn)的坐標(biāo);(2)根據(jù)條件可得,然后設(shè)的坐標(biāo)為,根據(jù),可得的坐標(biāo).【詳解】(1)①,,,,,,,,,,;②由知,點(diǎn)為四邊形外接圓的圓心,,,,,四邊形外接圓的圓心為的中點(diǎn),點(diǎn)的坐標(biāo)為;(2)由兩點(diǎn)間的距離公式可得,,,,過點(diǎn)的直線將四邊形分成周長相等的兩部分,,設(shè)的坐標(biāo)為,則,,,,點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查向量的夾角公式、向量相等、向量的運(yùn)算性質(zhì)、兩點(diǎn)間的距離公式等,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力.20、(1),,;(2)猜想,證明見解析.【解析】

(1)利用遞推公式可計算出、、的值;(2)根據(jù)數(shù)列的前四項(xiàng)可猜想出,然后利用數(shù)學(xué)歸納法即可證明出猜想成立.【詳解】(1),,則,,;(2)猜想,下面利用數(shù)學(xué)歸納法證明.假設(shè)當(dāng)時成立,即,那么當(dāng)時,,這說明當(dāng)時,猜想也成立.由歸納原理可知,.【點(diǎn)睛】本題考查利用數(shù)列遞推公式寫出數(shù)列中的項(xiàng),同時也考查了利用數(shù)學(xué)歸納法證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論