




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省濟(jì)寧市任城區(qū)2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列正確的是()A.若a,b∈R,則B.若x<0,則x+≥-2=-4C.若ab≠0,則D.若x<0,則2x+2-x>22.已知曲線C的方程為x2+y2=2(x+|y|),直線x=my+4與曲線C有兩個交點(diǎn),則m的取值范圍是()A.m>1或m<﹣1 B.m>7或m<﹣7C.m>7或m<﹣1 D.m>1或m<﹣73.在中,已知a,b,c分別為,,所對的邊,且a,b,c成等差數(shù)列,,,則()A. B. C. D.4.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則5.過點(diǎn)A(3,3)且垂直于直線的直線方程為A. B. C. D.6.已知函數(shù)是奇函數(shù),若,則的取值范圍是()A. B. C. D.7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a2+a4=6,則S5等于()A.10 B.12 C.15 D.308.設(shè)集合,則()A. B. C. D.9.設(shè),,在,,…,中,正數(shù)的個數(shù)是()A.15 B.16 C.18 D.2010.在中,內(nèi)角所對的邊分別為,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.給出以下四個結(jié)論:①過點(diǎn),在兩軸上的截距相等的直線方程是;②若是等差數(shù)列的前n項(xiàng)和,則;③在中,若,則是等腰三角形;④已知,,且,則的最大值是2.其中正確的結(jié)論是________(寫出所有正確結(jié)論的番號).12.兩平行直線與之間的距離為_______.13.函數(shù)的值域?yàn)開_____.14.已知,,若,則實(shí)數(shù)________.15.函數(shù)在區(qū)間上的最大值為,則的值是_____________.16.中,內(nèi)角、、所對的邊分別是、、,已知,且,,則的面積為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,是正方形,是該正方形的中心,是平面外一點(diǎn),底面,是的中點(diǎn).求證:(1)平面;(2)平面平面.18.已知數(shù)列和滿足:,,,,且是以q為公比的等比數(shù)列.(1)求證:;(2)若,試判斷是否為等比數(shù)列,并說明理由.(3)求和:.19.己知向量,,設(shè)函數(shù),且的圖象過點(diǎn)和點(diǎn).(1)當(dāng)時,求函數(shù)的最大值和最小值及相應(yīng)的的值;(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若在有兩個不同的解,求實(shí)數(shù)的取值范圍.20.已知函數(shù)的部分圖象如圖所示.(1)求與的值;(2)設(shè)的三個角、、所對的邊依次為、、,如果,且,試求的取值范圍;(3)求函數(shù)的最大值.21.已知.(1)當(dāng)時,解不等式;(2)若不等式的解集為,求實(shí)數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】對于A,當(dāng)ab<0時不成立;對于B,若x<0,則x+=-≤-2=-4,當(dāng)且僅當(dāng)x=-2時,等號成立,因此B選項(xiàng)不成立;對于C,取a=-1,b=-2,+=-<a+b=-3,所以C選項(xiàng)不成立;對于D,若x<0,則2x+2-x>2成立.故選D.2、A【解析】
先畫出曲線的圖象,再求出直線與相切時的,最后結(jié)合圖象可得的取值范圍,得到答案.【詳解】如圖所示,曲線的圖象是兩個圓的一部分,由圖可知:當(dāng)直線與曲線相切時,只有一個交點(diǎn),此時,結(jié)合圖象可得或.故選:A.【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟練應(yīng)有直線與圓的位置關(guān)系,合理結(jié)合圖象求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于中檔試題.3、B【解析】
利用成等差數(shù)列可得,再利用余弦定理構(gòu)造的結(jié)構(gòu)再代入求得即可.【詳解】由成等差數(shù)列可得,由余弦定理有,即,解得,即.故選:B【點(diǎn)睛】本題主要考查了等差中項(xiàng)與余弦定理的運(yùn)算,需要根據(jù)題意構(gòu)造與的結(jié)構(gòu)代入求解.屬于中檔題.4、D【解析】
A項(xiàng),可能相交或異面,當(dāng)時,存在,,故A項(xiàng)錯誤;B項(xiàng),可能相交或垂直,當(dāng)
時,存在,,故B項(xiàng)錯誤;C項(xiàng),可能相交或垂直,當(dāng)
時,存在,,故C項(xiàng)錯誤;D項(xiàng),垂直于同一平面的兩條直線相互平行,故D項(xiàng)正確,故選D.本題主要考查的是對線,面關(guān)系的理解以及對空間的想象能力.考點(diǎn):直線與平面、平面與平面平行的判定與性質(zhì);直線與平面、平面與平面垂直的判定與性質(zhì).5、D【解析】過點(diǎn)A(3,3)且垂直于直線的直線斜率為,代入過的點(diǎn)得到.故答案為D.6、C【解析】
由題意首先求得m的值,然后結(jié)合函數(shù)的性質(zhì)求解不等式即可.【詳解】函數(shù)為奇函數(shù),則恒成立,即恒成立,整理可得:,據(jù)此可得:,即恒成立,據(jù)此可得:.函數(shù)的解析式為:,,當(dāng)且僅當(dāng)時等號成立,故奇函數(shù)是定義域內(nèi)的單調(diào)遞增函數(shù),不等式即,據(jù)此有:,由函數(shù)的單調(diào)性可得:,求解不等式可得的取值范圍是.本題選擇C選項(xiàng).【點(diǎn)睛】對于求值或范圍的問題,一般先利用函數(shù)的奇偶性得出區(qū)間上的單調(diào)性,再利用其單調(diào)性脫去函數(shù)的符號“f”,轉(zhuǎn)化為解不等式(組)的問題,若f(x)為偶函數(shù),則f(-x)=f(x)=f(|x|).7、C【解析】因?yàn)榈炔顢?shù)列{an}中,a2+a4=6,故a1+a5=6,所以S5===15.故選C.8、B【解析】
先求得集合,再結(jié)合集合的交集的概念及運(yùn)算,即可求解.【詳解】由題意,集合,所以.故選:B.【點(diǎn)睛】本題主要考查了集合的交集的運(yùn)算,其中解答中正確求解集合B,結(jié)合集合的交集的概念與運(yùn)算求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、D【解析】
根據(jù)數(shù)列的通項(xiàng)公式可判斷出數(shù)列的正負(fù),然后分析的正負(fù),再由的正負(fù)即可確定出,,…,中正數(shù)的個數(shù).【詳解】當(dāng)時,,當(dāng)時,,因?yàn)?,所以,因?yàn)?,,所以取等號時,所以均為正,又因?yàn)椋跃鶠檎?,所以正?shù)的個數(shù)是:.故選:D.【點(diǎn)睛】本題考查數(shù)列與函數(shù)綜合應(yīng)用,著重考查了推理判斷能力,難度較難.對于數(shù)列各項(xiàng)和的正負(fù),可通過數(shù)列本身的單調(diào)性周期性進(jìn)行判斷,從而為判斷各項(xiàng)和的正負(fù)做鋪墊.10、C【解析】
根據(jù)題目條件結(jié)合三角形的正弦定理以及三角形內(nèi)角和定理可得sinA,進(jìn)而利用二倍角余弦公式得到結(jié)果.【詳解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故選C【點(diǎn)睛】本題考查了正弦定理及二倍角余弦公式的靈活運(yùn)用,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、②④【解析】
①中滿足題意的直線還有,②中根據(jù)等差數(shù)列前項(xiàng)和的特點(diǎn),得到,③中根據(jù)同角三角函數(shù)關(guān)系進(jìn)行化簡計(jì)算,從而進(jìn)行判斷,④中根據(jù)基本不等式進(jìn)行判斷.【詳解】①中過點(diǎn),在兩軸上的截距相等的直線還可以過原點(diǎn),即兩軸上的截距都為,即直線,所以錯誤;②中是等差數(shù)列的前n項(xiàng)和,根據(jù)等差數(shù)列前項(xiàng)和的特點(diǎn),,是一個不含常數(shù)項(xiàng)的二次式,從而得到,即,所以正確;③中在中,若,則可得,所以可得或,所以可得或,從而得到為直角三角形或等腰三角形,所以錯誤;④中因?yàn)椋?,且,由基本不等式,得到,所以,?dāng)且僅當(dāng),即時,等號成立.所以,即的最大值是,所以正確.故答案為:②④【點(diǎn)睛】本題考查截距相等的直線的特點(diǎn),等差數(shù)列前項(xiàng)和的特點(diǎn),判斷三角形形狀,基本不等式求積的最大值,屬于中檔題.12、【解析】
先根據(jù)兩直線平行求出,再根據(jù)平行直線間的距離公式即可求出.【詳解】因?yàn)橹本€的斜率為,所以直線的斜率存在,,即,解得或.當(dāng)時,,即,故兩平行直線的距離為.當(dāng)時,,,兩直線重合,不符合題意,應(yīng)舍去.故答案為:.【點(diǎn)睛】本題主要考查平行直線間的距離公式的應(yīng)用,以及根據(jù)兩直線平行求參數(shù),屬于基礎(chǔ)題.13、【解析】
由反三角函數(shù)的性質(zhì)得到,即可求得函數(shù)的值域.【詳解】由,則,,又,,即,函數(shù)的值域?yàn)?故答案:.【點(diǎn)睛】本題考查反三角函數(shù)的性質(zhì)及其應(yīng)用,屬于基礎(chǔ)題.14、2或【解析】
根據(jù)向量平行的充要條件代入即可得解.【詳解】由有:,解得或.故答案為:2或.【點(diǎn)睛】本題考查了向量平行的應(yīng)用,屬于基礎(chǔ)題.15、【解析】
利用同角三角函數(shù)平方關(guān)系,易將函數(shù)化為二次型的函數(shù),結(jié)合余弦函數(shù)的性質(zhì),及函數(shù)在上的最大值為1,易求出的值.【詳解】函數(shù)又函數(shù)在上的最大值為1,≤0,又,且在上單調(diào)遞增,所以即.故答案為:【點(diǎn)睛】本題考查的知識點(diǎn)是三角函數(shù)的最值,其中利用同角三角函數(shù)平方關(guān)系,將函數(shù)化為二次型的函數(shù),是解答本題的關(guān)鍵,屬于中檔題.16、【解析】
由正弦定理邊角互化思想結(jié)合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計(jì)算出的面積.【詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【點(diǎn)睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查利用余弦定理解三角形以及三角形面積公式的應(yīng)用,解題時要結(jié)合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】
(1)連接,證明后即得線面平行;(2)可證明平面,然后得面面垂直.【詳解】(1)如圖,連接,∵分別是中點(diǎn),∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【點(diǎn)睛】本題考查證明線面平行和面面垂直,掌握線面平行和面面垂直的判定定理是解題關(guān)鍵.18、(1)證明見解析(2)是等比數(shù)列,詳見解析(3)答案不唯一,具體見解析【解析】
(1)由即可證明;(2)證明即可(3)由(1)可知,是以為公比的等比數(shù)列,也是以為公比的等比數(shù)列,討論和分組求和即可【詳解】(1)因?yàn)?,且是以q為公比的等比數(shù)列,所以,則,所以.(2)是等比數(shù)列因?yàn)椋凰?,又所以是?為首項(xiàng),為公比的等比數(shù)列.(3)由(1)可知,是以為公比的等比數(shù)列,也是以為公比的等比數(shù)列,所以當(dāng)時,,當(dāng)時.【點(diǎn)睛】本題考查等比數(shù)列的證明,分組求和,考查推理計(jì)算及分類討論思想,是中檔題19、(1)最大值為2,此時;最小值為-1,此時.(2)【解析】
(1)根據(jù)向量數(shù)量積坐標(biāo)公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點(diǎn),求解函數(shù)解析式,當(dāng)時,解出的范圍,根據(jù)三角函數(shù)性質(zhì),可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過點(diǎn)和,得到,解得,.當(dāng)時,,,最大值為2,此時,最小值為-1,此時.(2)將函數(shù)的圖象向右平移一個單位得,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得令,,如圖當(dāng)時,在有兩個不同的解∴,即.【點(diǎn)睛】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸縮變換,考查計(jì)算能力,考查轉(zhuǎn)化與化歸思想,考查數(shù)形結(jié)合思想,屬于中等題型.20、(1),;(2);(3).【解析】
(1)由圖象有,可得的值,然后根據(jù)五點(diǎn)法作圖可得,進(jìn)而求出(2)根據(jù),可得,然后由行列式求出,再由正弦定理轉(zhuǎn)化為,根據(jù)的范圍求出的范圍(3)將化簡到最簡形式,然后逐步換元,轉(zhuǎn)化為利用導(dǎo)數(shù)求值問題.【詳解】(1)由函數(shù)圖象可得,解得,再根據(jù)五點(diǎn)法作圖可得,解得,.(2),由正弦定理知,,,,.(3)令,因?yàn)?,所以,則,令,因?yàn)?,所?則令,則,只需求出的最大值,,令,則,當(dāng)時,,此時單調(diào)遞增,當(dāng)時,,此時單調(diào)遞減,.函數(shù)的最大值為.【點(diǎn)睛】本題主要考查了利用三角函數(shù)的部分圖象求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云平臺服務(wù)質(zhì)量管理與提升
- 物業(yè)管理停車場租賃合同(3篇)
- 加強(qiáng)老舊小區(qū)排水管網(wǎng)修復(fù)與維護(hù)
- 網(wǎng)絡(luò)文明面試題及答案
- 數(shù)據(jù)結(jié)構(gòu)的試題及答案
- 產(chǎn)品檢測面試題庫及答案
- 村級災(zāi)害信息員培訓(xùn)的面臨的問題、機(jī)遇與挑戰(zhàn)
- 促進(jìn)民營經(jīng)濟(jì)高質(zhì)量發(fā)展研究
- 生蠔買賣合同協(xié)議書
- 信職解剖實(shí)訓(xùn)考試題及答案
- 氣管插管術(shù)的配合與護(hù)理課件
- 腰池腹腔分流
- 寧夏水利建筑工程預(yù)算定額
- 深度解析競品分析的流程與技巧
- 公司員工升職加薪制度模板
- 2024年運(yùn)動員培養(yǎng)合同:體育人才委托培養(yǎng)協(xié)議3篇
- 2025年重慶環(huán)衛(wèi)集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 塔吊安拆工培訓(xùn)
- DB50T 395-2011 城市道路檢測技術(shù)規(guī)程
- 如何利用圖書館資源培養(yǎng)孩子的閱讀習(xí)慣
- 2025福建福州地鐵招聘488名工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
評論
0/150
提交評論