




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市同濟中學2024年高三六校第一次聯(lián)考數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則下列結論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關于點對稱C.函數(shù)在上單調遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到2.我國古代數(shù)學家秦九韶在《數(shù)書九章》中記述了“三斜求積術”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.3.現(xiàn)有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.4.設是虛數(shù)單位,則()A. B. C. D.5.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.6.展開項中的常數(shù)項為A.1 B.11 C.-19 D.517.復數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.8.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.9.已知向量,(其中為實數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.下列函數(shù)中既關于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.11.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.12.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(shù)(為虛數(shù)單位),則的模為____.14.已知復數(shù)滿足(為虛數(shù)單位),則復數(shù)的實部為____________.15.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.16.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.18.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設分別是數(shù)列的前項和,且,,(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.(12分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為.(l)求直線的普通方程和曲線C的直角坐標方程:(2)若直線與曲線C相交于A,B兩點,且.求直線的方程.20.(12分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.21.(12分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.22.(10分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數(shù)a的取值范圍;(3)證明:對一切,都有成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.2、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.3、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4、A【解析】
利用復數(shù)的乘法運算可求得結果.【詳解】由復數(shù)的乘法法則得.故選:A.【點睛】本題考查復數(shù)的乘法運算,考查計算能力,屬于基礎題.5、B【解析】
作出不等式組對應的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.6、B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.7、D【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關復數(shù)的問題,涉及到的知識點有復數(shù)的乘除運算,復數(shù)的共軛復數(shù),復數(shù)的模,屬于基礎題目.8、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.9、A【解析】
結合向量垂直的坐標表示,將兩個條件相互推導,根據(jù)能否推導的情況判斷出充分、必要條件.【詳解】由,則,所以;而當,則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎知識;考查運算求解能力,推理論證能力,應用意識.10、C【解析】
根據(jù)函數(shù)的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質,根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調性,屬于基礎題.11、D【解析】
根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.12、A【解析】
首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,所以.14、【解析】
利用復數(shù)的概念與復數(shù)的除法運算計算即可得到答案.【詳解】,所以復數(shù)的實部為2.故答案為:2【點睛】本題考查復數(shù)的除法運算,考查學生的基本計算能力,是一道基礎題.15、.【解析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.16、【解析】在圓上其他位置任取一點B,設圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)對求導,對參數(shù)進行分類討論,根據(jù)函數(shù)單調性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉化不等式得,令,化簡得,因此,,最后根據(jù)導數(shù)研究對應函數(shù)單調性,確定對應函數(shù)最值,即得取值集合.【詳解】(1),當時,對恒成立,與題意不符,當,,∴時,即函數(shù)在單調遞增,在單調遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數(shù)在單調遞減,∴,與不符;若,則時,,即函數(shù)在單調遞減,∴,與式不符;若,解得,此時恒成立,,即函數(shù)在單調遞增,又,∴時,;時,符合式,綜上,存在唯一實數(shù)符合題意.【點睛】利用導數(shù)研究不等式恒成立或存在型問題,首先要構造函數(shù),利用導數(shù)研究函數(shù)的單調性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造函數(shù),直接把問題轉化為函數(shù)的最值問題.18、(1);(2)【解析】
方案一:(1)根據(jù)等差數(shù)列的通項公式及前n項和公式列方程組,求出和,從而寫出數(shù)列的通項公式;(2)由第(1)題的結論,寫出數(shù)列的通項,采用分組求和、等比求和公式以及裂項相消法,求出數(shù)列的前項和.其余兩個方案與方案一的解法相近似.【詳解】解:方案一:(1)∵數(shù)列都是等差數(shù)列,且,,解得,綜上(2)由(1)得:方案二:(1)∵數(shù)列都是等差數(shù)列,且,解得,.綜上,(2)同方案一方案三:(1)∵數(shù)列都是等差數(shù)列,且.,解得,,.綜上,(2)同方案一【點睛】本題考查了等差數(shù)列的通項公式、前n項和公式的應用,考查了分組求和、等比求和及裂項相消法求數(shù)列的前n項和,屬于中檔題.19、(1)見解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標方程轉為直角坐標方程.(2)利用直線被圓截得的弦長公式計算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.【點睛】本題考查參數(shù)方程,極坐標方程與直角坐標方程之間的互化,考查直線被圓截得的弦長公式的應用,考查分析能力與計算能力,屬于基礎題.20、(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數(shù)方程轉化為普通方程,考查直角坐標方程轉化為極坐標方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.21、(1)證明見解析(2)【解析】
(1)先證明EF平面,即可求證;(2)根據(jù)二面角的余弦值,可得平面,以為坐標原點,建立空間直角坐標系,利用向量計算線面角即可.【詳解】(1)連接,交于點,連結.則,故面.又面,因此.(2)由(1)知即為二面角的平面角,且.在中應用余弦定理,得,于是有,即,從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能投顧平臺風險控制與合規(guī)運營風險管理風險控制策略創(chuàng)新報告
- 2022員工的獲獎感言
- 2022年冬季安全教育講話稿15篇
- 年產(chǎn)200噸醫(yī)藥中間體項目初步設計(參考范文)
- 2022拓展訓練的心得體會合集15篇
- 國際冷鏈物流產(chǎn)業(yè)園擴建項目建議書(范文參考)
- 供水設施改造與升級可行性研究報告
- 服裝設計作業(yè)展示
- 德育心理健康教育主題班會
- 五邑大學《媒介管理學》2023-2024學年第二學期期末試卷
- 2025年全國防災減災日班會 課件
- SL631水利水電工程單元工程施工質量驗收標準第1部分:土石方工程
- (二調)武漢市2025屆高中畢業(yè)生二月調研考試 英語試卷(含標準答案)+聽力音頻
- 數(shù)學-湖北省武漢市2025屆高中畢業(yè)生二月調研考試(武漢二調)試題和解析
- DL∕T 5370-2017 水電水利工程施工通 用安全技術規(guī)程
- 小學五年級英語一般疑問句練習題
- SAP_PS-PS模塊配置和操作手冊
- 煤矸石綜合利用填溝造地復墾項目可行性研究報告-甲乙丙資信
- 綠化養(yǎng)護報價表(共8頁)
- 小升初幼升小學生擇校重點中學入學簡歷自薦信自我介紹word模板 女生版
- 本科教學工作審核評估匯報PPT課件
評論
0/150
提交評論