貴州省凱里市一中2024年高一數(shù)學第二學期期末檢測試題含解析_第1頁
貴州省凱里市一中2024年高一數(shù)學第二學期期末檢測試題含解析_第2頁
貴州省凱里市一中2024年高一數(shù)學第二學期期末檢測試題含解析_第3頁
貴州省凱里市一中2024年高一數(shù)學第二學期期末檢測試題含解析_第4頁
貴州省凱里市一中2024年高一數(shù)學第二學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

貴州省凱里市一中2024年高一數(shù)學第二學期期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.是等差數(shù)列的前n項和,如果,那么的值是()A.12 B.24 C.36 D.482.函數(shù)的最小正周期為,則圖象的一條對稱軸方程是()A. B. C. D.3.已知等差數(shù)列的前項之和為,前項和為,則它的前項的和為()A.B.C.D.4.已知函數(shù),如果不等式的解集為,那么不等式的解集為()A. B.C. D.5.天氣預報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計,這三天中恰有兩天下雨的概率近似為A.0.35 B.0.25 C.0.20 D.0.156.下列事件中,是必然事件的是()A.任意買一張電影票,座位號是2的倍數(shù) B.13個人中至少有兩個人生肖相同C.車輛隨機到達一個路口,遇到紅燈 D.明天一定會下雨7.已知向量a=(1,-1),bA.-1 B.0 C.1 D.28.《九章算術》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為()(結果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天9.如圖,一個邊長為的正方形里有一個月牙形的圖案,為了估算這個月牙形圖案的面積,向這個正方形里隨機投入了粒芝麻,經(jīng)過統(tǒng)計,落在月牙形圖案內(nèi)的芝麻有粒,則這個月牙圖案的面積約為()A. B. C. D.10.已知向量,若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為鈍角,且,則__________.12.已知直線過點,且在兩坐標軸上的截距相等,則此直線的方程為_____________.13.設,用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項公式為_______14.在銳角△ABC中,BC=2,sinB+sinC=2sinA,則AB+AC=_____15.已知向量,滿足,與的夾角為,則在上的投影是;16.在中,若,則等于__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,.(1)求的值;(2)求的值.18.已知等比數(shù)列的前項和為,且成等差數(shù)列,(1)求數(shù)列的公比;(2)若,求數(shù)列的通項公式.19.已知數(shù)列的各項均不為零.設數(shù)列的前項和為,數(shù)列的前項和為,且,.(Ⅰ)求,的值;(Ⅱ)證明數(shù)列是等比數(shù)列,并求的通項公式;(Ⅲ)證明:.20.已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求當m為何值時,(1)直線平分圓;(2)直線與圓相切.21.已知三角形ABC的頂點為,,,M為AB的中點.(1)求CM所在直線的方程;(2)求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由等差數(shù)列的性質:若m+n=p+q,則即可得.【詳解】故選B【點睛】本題考查等比數(shù)列前n項和的求解和性質的應用,是基礎題型,解題中要注意認真審題,注意下標的變化規(guī)律,合理地進行等價轉化.2、D【解析】

先根據(jù)函數(shù)的周期求出的值,求出函數(shù)的對稱軸方程,然后利用賦值法可得出函數(shù)圖象的一條對稱軸方程.【詳解】由于函數(shù)的最小正周期為,則,,令,解得.當時,函數(shù)圖象的一條對稱軸方程為.故選:D.【點睛】本題考查利用正弦型函數(shù)的周期求參數(shù),同時也考查了正弦型函數(shù)圖象對稱軸方程的計算,解題時要結合正弦函數(shù)的基本性質來進行求解,考查運算求解能力,屬于中等題.3、C【解析】試題分析:由于等差數(shù)列中也成等差數(shù)列,即成等差數(shù)列,所以,故選C.考點:等差數(shù)列前項和的性質.4、A【解析】

一元二次不等式大于零解集是,先判斷二次項系數(shù)為負,再根據(jù)根與系數(shù)關系,可求出a,b的值,代入解析式,求解不等式.【詳解】由的解集是,則故有,即.由解得或故不等式的解集是,故選:A.【點睛】對于含參數(shù)的一元二次不等式需要先判斷二次項系數(shù)的正負,再進一步求解參數(shù).5、B【解析】解:由題意知模擬三天中恰有兩天下雨的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù),在20組隨機數(shù)中表示三天中恰有兩天下雨的有:191、271、932、812、393,共5組隨機數(shù),∴所求概率為=0.1.故選B6、B【解析】

根據(jù)必然事件的定義,逐項判斷,即可得到本題答案.【詳解】買一張電影票,座位號可以是2的倍數(shù),也可以不是2的倍數(shù),故A不正確;13個人中至少有兩個人生肖相同,這是必然事件,故B正確;車輛隨機到達一個路口,可以遇到紅燈,也可以遇到綠燈或者黃燈,故C不正確;明天可能下雨也可能不下雨,故D不正確.故選:B【點睛】本題主要考查必然事件的定義,屬基礎題.7、C【解析】

由向量的坐標運算表示2a【詳解】解:因為a=(1,-1),b=(-1,2故選C.【點睛】本題考查了向量的加法和數(shù)量積的坐標運算;屬于基礎題目.8、A【解析】

設蒲的長度組成等比數(shù)列{an},其a1=3,公比為,其前n項和為An.莞的長度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項和為Bn.利用等比數(shù)列的前n項和公式及其對數(shù)的運算性質即可得出..【詳解】設蒲的長度組成等比數(shù)列{an},其a1=3,公比為,其前n項和為An.莞的長度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項和為Bn.則An,Bn,由題意可得:,化為:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估計2.3日蒲、莞長度相等,故選:A.【點睛】本題考查了等比數(shù)列的通項公式與求和公式在實際中的應用,考查了推理能力與計算能力,屬于中檔題.9、A【解析】

根據(jù)幾何概型直接進行計算即可.【詳解】月牙形圖案的面積約為:本題正確選項:【點睛】本題考查幾何概型的應用,屬于基礎題.10、A【解析】

先根據(jù)向量的平行求出的值,再根據(jù)向量的加法運算求出答案.【詳解】向量,,

解得,

∴,

故選A.【點睛】本題考查了向量的平行和向量的坐標運算,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

利用同角三角函數(shù)的基本關系即可求解.【詳解】由為鈍角,且,所以,所以.故答案為:【點睛】本題考查了同角三角函數(shù)的基本關系,同時考查了象限角的三角函數(shù)的符號,屬于基礎題.12、或【解析】

分兩種情況考慮,第一:當所求直線與兩坐標軸的截距不為0時,設出該直線的方程為,把已知點坐標代入即可求出的值,得到直線的方程;第二:當所求直線與兩坐標軸的截距為0時,設該直線的方程為,把已知點的坐標代入即可求出的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.【詳解】解:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為,把代入所設的方程得:,則所求直線的方程為即;②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為,把代入所求的方程得:,則所求直線的方程為即.綜上,所求直線的方程為:或.故答案為:或【點睛】此題考查學生會根據(jù)條件設出直線的截距式方程和點斜式方程,考查了分類討論的數(shù)學思想,屬于基礎題.13、【解析】

把集合中每個數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計算,可求出數(shù)列的通項公式.【詳解】由題意可知,,,,是0,1,2,,的一個排列,且集合中共有個數(shù),若把集合中每個數(shù)表示為的形式,則,,,,每個數(shù)都出現(xiàn)次,因此,,故答案為:.【點睛】本題以數(shù)列新定義為問題背景,考查等比數(shù)列的求和公式,考查學生的理解能力與計算能力,屬于中等題.14、1【解析】

由正弦定理化已知等式為邊的關系,可得結論.【詳解】∵sinB+sinC=2sinA,由正弦定理得,即.故答案為1.【點睛】本題考查正弦定理,解題時利用正弦定理進行邊角關系的轉化即可.15、1【解析】考查向量的投影定義,在上的投影等于的模乘以兩向量夾角的余弦值16、;【解析】

由條件利用三角形內(nèi)角和公式求得,再利用正弦定理即可求解.【詳解】在中,,,,即,,故答案為:【點睛】本題考查了正弦定理解三角形,需熟記定理的內(nèi)容,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用同角三角函數(shù)的平方關系可求出的值,然后再利用同角三角函數(shù)的商數(shù)關系可求出的值;(2)在分式分子和分母中同時除以,將所求分式轉化為含的分式求解,代值計算即可.【詳解】(1),,因此,;(2)原式.【點睛】本題考查同角三角函數(shù)的商數(shù)關系求值,同時也考查了弦化切思想的應用,解題時要熟悉弦化切所適用的基本情形,考查計算能力,屬于基礎題.18、(1)(2)【解析】

(1)由等差數(shù)列的中項性質,以及等比數(shù)列的求和公式,解方程可得;(2)由等比數(shù)列的通項公式,解方程可得首項,進而得到所求通項公式.【詳解】解:(1)等比數(shù)列的前項和為,且,,成等差數(shù)列,可得,顯然不成立,即有,則,化為,解得;(2),即,可得,數(shù)列的通項公式為.【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查方程思想和運算能力,屬于基礎題.19、(Ⅰ)2,4;(Ⅱ)證明見解析,;(Ⅲ)證明見解析.【解析】

(Ⅰ)直接給n賦值求出,的值;(Ⅱ)利用項和公式化簡,再利用定義法證明數(shù)列是等比數(shù)列,即得等比數(shù)列的通項公式;(Ⅲ)由(Ⅱ)知,再利用等比數(shù)列求和證明不等式.【詳解】(Ⅰ),令,得,,;令,得,即,,.證明:(Ⅱ),①,②②①得:,,,從而當時,,④③④得:,即,,.又由(Ⅰ)知,,,.數(shù)列是以2為首項,以為公比的等比數(shù)列,則.(Ⅲ)由(Ⅱ)知,因為當時,,所以.于是.【點睛】本題主要考查等比數(shù)列性質的證明和通項的求法,考查等比數(shù)列求和和放縮法證明不等式,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1)m=0;(2)m=±2.【解析】試題分析:(1)直線平分圓,即直線過圓心,將圓心坐標代入直線方程可得m值(2)根據(jù)圓心到直線距離等于半徑列方程,解得m值試題解析:解:(1)∵直線平分圓,所以圓心在直線y=x+m上,即有m=0.(2)∵直線與圓相切,所以圓心到直線的距離等于半徑,∴d==2,m=±2.即m=±2時,直線l與圓相切.點睛:判斷直線與圓的位置關系的常見方法(1)幾何法:利用d與r的關系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論