




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市十三校2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在四邊形中,,,,,,則的長(zhǎng)度為()A. B.C. D.2.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.3.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過下面的隨機(jī)模擬方法來估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個(gè)數(shù)對(duì),其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長(zhǎng)的數(shù)對(duì)的個(gè)數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.4.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.5.“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.612426.如圖,在平行四邊形中,為對(duì)角線的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,,則()A. B.C. D.7.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,9.已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時(shí),的值為()A. B. C. D.10.已知函數(shù)則函數(shù)的圖象的對(duì)稱軸方程為()A. B.C. D.11.已知定點(diǎn)都在平面內(nèi),定點(diǎn)是內(nèi)異于的動(dòng)點(diǎn),且,那么動(dòng)點(diǎn)在平面內(nèi)的軌跡是()A.圓,但要去掉兩個(gè)點(diǎn) B.橢圓,但要去掉兩個(gè)點(diǎn)C.雙曲線,但要去掉兩個(gè)點(diǎn) D.拋物線,但要去掉兩個(gè)點(diǎn)12.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在一個(gè)倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個(gè)半徑為1的不銹鋼制的實(shí)心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.14.展開式的第5項(xiàng)的系數(shù)為_____.15.展開式中的系數(shù)的和大于8而小于32,則______.16.能說明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點(diǎn),且.(1)求證:平面ACE;(2)當(dāng)PA的長(zhǎng)為何值時(shí),AC與平面PCD所成的角為?18.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.19.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)當(dāng)時(shí),求實(shí)數(shù)的取值范圍.20.(12分)在中,,是邊上一點(diǎn),且,.(1)求的長(zhǎng);(2)若的面積為14,求的長(zhǎng).21.(12分)某地在每周六的晚上8點(diǎn)到10點(diǎn)半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時(shí)刻亮燈的概率均為,并且是否亮燈彼此相互獨(dú)立.現(xiàn)統(tǒng)計(jì)了其中100盞燈在一場(chǎng)燈光展中亮燈的時(shí)長(zhǎng)(單位:),得到下面的頻數(shù)表:亮燈時(shí)長(zhǎng)/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時(shí)長(zhǎng)作為一盞燈的亮燈時(shí)長(zhǎng).(1)試估計(jì)的值;(2)設(shè)表示這10000盞燈在某一時(shí)刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機(jī)變量滿足,則認(rèn)為.假設(shè)當(dāng)時(shí),燈光展處于最佳燈光亮度.試由此估計(jì),在一場(chǎng)燈光展中,處于最佳燈光亮度的時(shí)長(zhǎng)(結(jié)果保留為整數(shù)).附:①某盞燈在某一時(shí)刻亮燈的概率等于亮燈時(shí)長(zhǎng)與燈光展總時(shí)長(zhǎng)的商;②若,則,,.22.(10分)已知函數(shù),的最大值為.求實(shí)數(shù)b的值;當(dāng)時(shí),討論函數(shù)的單調(diào)性;當(dāng)時(shí),令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域?yàn)??若存在,求?shí)數(shù)k的取值范圍;若不存在,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.2、D【解析】
利用輔助角公式,化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因?yàn)?,由,解得,即函?shù)的增區(qū)間為,所以當(dāng)時(shí),增區(qū)間的一個(gè)子集為.故選D.【點(diǎn)睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于把握正弦函數(shù)的單調(diào)性,同時(shí)對(duì)于整體法的應(yīng)用,使問題化繁為簡(jiǎn),難度較易.3、B【解析】
先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)?,都是區(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長(zhǎng),則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個(gè)中檔題.4、D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱,排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱是解題的關(guān)鍵.5、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。6、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運(yùn)算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點(diǎn)睛】本題考查向量的線性運(yùn)算問題,屬于基礎(chǔ)題7、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.8、A【解析】
設(shè),取與重合時(shí)的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【詳解】如圖所示,利用排除法,取與重合時(shí)的情況.不妨設(shè),延長(zhǎng)到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時(shí),,,排除B、D選項(xiàng);因?yàn)?,,此時(shí),,當(dāng)平面平面時(shí),,,排除C選項(xiàng).故選:A.【點(diǎn)睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.9、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí).故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.10、C【解析】
,將看成一個(gè)整體,結(jié)合的對(duì)稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的對(duì)稱性的問題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.11、A【解析】
根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動(dòng)點(diǎn),所以的軌跡是圓,但要去掉兩個(gè)點(diǎn)A,B故選:A【點(diǎn)睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問題,屬于中檔題.12、B【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)z,復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為利用模長(zhǎng)公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算,模長(zhǎng)公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點(diǎn)睛】本題考查圓錐的體積、球的體積的計(jì)算,考查學(xué)生空間想象能力與計(jì)算能力,是一道中檔題.14、70【解析】
根據(jù)二項(xiàng)式定理的通項(xiàng)公式,可得結(jié)果.【詳解】由題可知:第5項(xiàng)為故第5項(xiàng)的的系數(shù)為故答案為:70.【點(diǎn)睛】本題考查的是二項(xiàng)式定理,屬基礎(chǔ)題。15、4【解析】
由題意可得項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點(diǎn)睛】該題考查的是有關(guān)二項(xiàng)式定理的問題,涉及到的知識(shí)點(diǎn)有展開式中項(xiàng)的系數(shù)和,屬于基礎(chǔ)題目.16、答案不唯一,如【解析】
根據(jù)對(duì)基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)當(dāng)時(shí),AC與平面PCD所成的角為.【解析】
(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過作,可證平面,根據(jù)計(jì)算,得出的大小,再計(jì)算的長(zhǎng).【詳解】(1)證明:連接BD交AC于點(diǎn)O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時(shí),AC與平面PCD所成的角為.【點(diǎn)睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計(jì)算,屬于中檔題.18、(1)見解析(2)【解析】
(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點(diǎn),可證平面,從而得,同理得),因此點(diǎn)到直線的距離即為點(diǎn)到平面的距離,由平面幾何知識(shí)易得最大值,然后可計(jì)算體積.【詳解】(1)證明:連接與交于,連接,因?yàn)槭橇庑?,所以為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)槠矫嫫矫?,所以平面.?)解:取中點(diǎn),連接,因?yàn)樗倪呅问橇庑?,,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離,過作直線的垂線段,在所有垂線段中長(zhǎng)度最大為,因?yàn)闉榈闹悬c(diǎn),故點(diǎn)到平面的最大距離為1,此時(shí),為的中點(diǎn),即,所以,所以.【點(diǎn)睛】本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質(zhì)是解題關(guān)鍵.19、(1)(2)當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【解析】
(1)當(dāng)時(shí),分類討論把不等式化為等價(jià)不等式組,即可求解.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,分類討論,即可求解.【詳解】(1)當(dāng)時(shí),,不等式可化為或或,解得不等式的解集為.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,所以當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【點(diǎn)睛】本題主要考查了含絕對(duì)值的不等式的求解,以及絕對(duì)值三角不等式的應(yīng)用,其中解答中熟記含絕對(duì)值不等式的解法,以及合理應(yīng)用絕對(duì)值的三角不等式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.20、(1)1;(2)5.【解析】
(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,,且,所以.所以.在中,據(jù)正弦定理可知,,所以.(2)在中,據(jù)正弦定理可知,所以.因?yàn)榈拿娣e為14,所以,即,得.在中,據(jù)余弦定理可知,,所以.【點(diǎn)睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數(shù)關(guān)系和兩角差的正弦公式化簡(jiǎn)求值,屬于簡(jiǎn)單題.21、(1)(2)①,,②72【解析】
(1)將每組數(shù)據(jù)的組中值乘以對(duì)應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時(shí)長(zhǎng)的平均數(shù),將此平均數(shù)除以(個(gè)小時(shí)),即可得到的估計(jì)值;(2)①利用二項(xiàng)分布的均值與方差的計(jì)算公式進(jìn)行求解;②先根據(jù)條件計(jì)算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對(duì)稱性,求解出在滿足取值范圍下對(duì)應(yīng)的概率.【詳解】(1)平均時(shí)間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時(shí)間長(zhǎng)度為72分鐘.【點(diǎn)睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長(zhǎng)度模型)、二項(xiàng)分布的均值與方差、正態(tài)分布的概率計(jì)算,屬于綜合性問題,難度一般.(1)如果,則;(2)計(jì)算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對(duì)稱性對(duì)應(yīng)概率的對(duì)稱性.22、(1);(2)時(shí),在單調(diào)增;時(shí),在單調(diào)遞減,在單調(diào)遞增;時(shí),同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2013毛概題庫(kù)及答案
- 2025年農(nóng)產(chǎn)品冷鏈物流行業(yè)冷鏈物流冷鏈物流企業(yè)戰(zhàn)略聯(lián)盟研究報(bào)告
- 勝任力測(cè)評(píng)技術(shù)革新-洞察及研究
- 浙江專用2025版高考數(shù)學(xué)一輪復(fù)習(xí)專題10計(jì)數(shù)原理概率復(fù)數(shù)第81練隨機(jī)事件的概率練習(xí)含解析
- 2024年秋三年級(jí)語文上冊(cè)第一單元1讓我們蕩起雙槳教學(xué)反思2蘇教版
- 2025版高考數(shù)學(xué)一輪復(fù)習(xí)課時(shí)作業(yè)26平面向量的概念及其線性運(yùn)算理含解析新人教版
- 江蘇專用2024-2025學(xué)年高中化學(xué)專題2第一單元1第1課時(shí)化學(xué)反應(yīng)速率的表示方法練習(xí)含解析蘇教版選修4
- 智算中心項(xiàng)目可行性研究報(bào)告
- 機(jī)關(guān)單位餐飲項(xiàng)目投資風(fēng)險(xiǎn)評(píng)估報(bào)告
- 鐵路軌枕墊項(xiàng)目投資風(fēng)險(xiǎn)評(píng)估報(bào)告
- 血液凈化護(hù)士進(jìn)修匯報(bào)
- 2024年廣州天河區(qū)六年級(jí)語文小升初摸底考試含答案
- 人工智能中的因果驅(qū)動(dòng)智慧樹知到期末考試答案2024年
- 2024年合肥市公安局警務(wù)輔助人員招聘筆試參考題庫(kù)附帶答案詳解
- 2024年中國(guó)建筑西南勘察設(shè)計(jì)研究院有限公司招聘筆試參考題庫(kù)含答案解析
- DG-TJ08-2433A-2023 外墻保溫一體化系統(tǒng)應(yīng)用技術(shù)標(biāo)準(zhǔn)(預(yù)制混凝土反打保溫外墻)
- 教師法制教育培訓(xùn)課件
- 鐵路貨運(yùn)流程課件
- 四川省成都市成華區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)
- 管工基礎(chǔ)知識(shí)培訓(xùn)課件
- 成人氣管切開拔管中國(guó)專家共識(shí)解讀
評(píng)論
0/150
提交評(píng)論