




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河南省洛陽孟津縣聯(lián)考數(shù)學(xué)九上期末綜合測(cè)試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.已知的圖象如圖,則和的圖象為()A. B. C. D.2.如圖,,兩條直線與這三條平行線分別交于點(diǎn)、、和、、,若,則的值為()A. B. C. D.3.根據(jù)圓規(guī)作圖的痕跡,可用直尺成功找到三角形外心的是()A. B.C. D.4.的倒數(shù)是()A.1 B.2 C. D.5.將二次函數(shù)y=5x2的圖象先向右平移2個(gè)單位,再向下平移3個(gè)單位,得到的函數(shù)圖象的解析式為()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x+2)2﹣3 D.y=5(x﹣2)2﹣36.已知m,n是關(guān)于x的一元二次方程的兩個(gè)解,若,則a的值為()A.﹣10 B.4 C.﹣4 D.107.若,則的值為()A. B. C. D.8.在Rt△ABC中,∠C=90°,若斜邊AB是直角邊BC的3倍,則tanB的值是()A. B.3 C. D.29.計(jì)算的結(jié)果是()A. B. C. D.10.下列交通標(biāo)志中,是中心對(duì)稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,AB是⊙O的直徑,D是⊙O上的任意一點(diǎn)(不與點(diǎn)A、B重合),延長(zhǎng)BD到點(diǎn)C,使DC=BD,則△ABC的形狀:_____12.如圖,在中,,,點(diǎn)為邊上一點(diǎn),作于點(diǎn),若,,則的值為____.13.在一次摸球?qū)嶒?yàn)中,摸球箱內(nèi)放有白色、黃色乒乓球共50個(gè),這兩種乒乓球的大小、材質(zhì)都相同.小明發(fā)現(xiàn),摸到白色乒乓球的頻率穩(wěn)定在60%左右,則箱內(nèi)黃色乒乓球的個(gè)數(shù)很可能是________.14.如圖,ΔABP是由ΔACD按順時(shí)針方向旋轉(zhuǎn)某一角度得到的,若∠BAP=60°,則在這一旋轉(zhuǎn)過程中,旋轉(zhuǎn)中心是____________,旋轉(zhuǎn)角度為____________.15.在一個(gè)不透明的袋子中裝有除顏色外其余均相同的7個(gè)小球,其中紅球2個(gè),黑球5個(gè),若再放入m個(gè)一樣的黑球并搖勻,此時(shí),隨機(jī)摸出一個(gè)球是黑球的概率等于,則m的值為.16.小球在如圖6所示的地板上自由滾動(dòng),并隨機(jī)停留在某塊正方形的地磚上,則它停在白色地磚上的概率是____.
17.如圖,菱形的頂點(diǎn)在軸正半軸上,頂點(diǎn)的坐標(biāo)為,以原點(diǎn)為位似中心、在點(diǎn)的異側(cè)將菱形縮小,使得到的菱形與原菱形的相似比為,則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為________.18.已知CD是Rt△ABC的斜邊AB上的中線,若∠A=35°,則∠BCD=_____________.三、解答題(共66分)19.(10分)已知:如圖(1),射線AM∥射線BN,AB是它們的公垂線,點(diǎn)D、C分別在AM、BN上運(yùn)動(dòng)(點(diǎn)D與點(diǎn)A不重合、點(diǎn)C與點(diǎn)B不重合),E是AB邊上的動(dòng)點(diǎn)(點(diǎn)E與A、B不重合),在運(yùn)動(dòng)過程中始終保持DE⊥EC.(1)求證:△ADE∽△BEC;(2)如圖(2),當(dāng)點(diǎn)E為AB邊的中點(diǎn)時(shí),求證:AD+BC=CD;(3)當(dāng)AD+DE=AB=時(shí).設(shè)AE=m,請(qǐng)?zhí)骄浚骸鰾EC的周長(zhǎng)是否與m值有關(guān)?若有關(guān),請(qǐng)用含有m的代數(shù)式表示△BEC的周長(zhǎng);若無關(guān),請(qǐng)說明理由.20.(6分)如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(diǎn)(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.已知△ABC的面積為1.(1)求這條拋物線相應(yīng)的函數(shù)表達(dá)式;(2)在拋物線上是否存在一點(diǎn)P,使得∠POB=∠CBO,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;(3)如圖②,M是拋物線上一點(diǎn),N是射線CA上的一點(diǎn),且M、N兩點(diǎn)均在第二象限內(nèi),A、N是位于直線BM同側(cè)的不同兩點(diǎn).若點(diǎn)M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點(diǎn)N的坐標(biāo).21.(6分)已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(﹣1,0)、B(3,0),且與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與x軸交于點(diǎn)D.(1)求拋物線的解析式;(2)點(diǎn)P是y軸正半軸上的一個(gè)動(dòng)點(diǎn),連結(jié)DP,將線段DP繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,點(diǎn)P的對(duì)應(yīng)點(diǎn)E恰好落在拋物線上,求出此時(shí)點(diǎn)P的坐標(biāo);(3)點(diǎn)M(m,n)是拋物線上的一個(gè)動(dòng)點(diǎn),連接MD,把MD2表示成自變量n的函數(shù),并求出MD2取得最小值時(shí)點(diǎn)M的坐標(biāo).22.(8分)在平面直角坐標(biāo)系中有,為原點(diǎn),,,將此三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,拋物線過三點(diǎn).(1)求此拋物線的解析式及頂點(diǎn)的坐標(biāo);(2)直線與拋物線交于兩點(diǎn),若,求的值;(3)拋物線的對(duì)稱軸上是否存在一點(diǎn)使得為直角三角形.23.(8分)如圖,陽光下,小亮的身高如圖中線段所示,他在地面上的影子如圖中線段所示,線段表示旗桿的高,線段表示一堵高墻.請(qǐng)你在圖中畫出旗桿在同一時(shí)刻陽光照射下形成的影子;如果小亮的身高,他的影子,旗桿的高,旗桿與高墻的距離,請(qǐng)求出旗桿的影子落在墻上的長(zhǎng)度.24.(8分)為加強(qiáng)學(xué)生身體鍛煉,某校開展體育“大課間”活動(dòng),學(xué)校決定在學(xué)生中開設(shè)A:籃球,B:立定跳遠(yuǎn),C:跳繩,D:跑步,E:排球五種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)五種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:(1)在這項(xiàng)調(diào)查中,共調(diào)查了_______名學(xué)生;(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;(3)若該校有1200名在校學(xué)生,請(qǐng)估計(jì)喜歡排球的學(xué)生大約有多少人.25.(10分)不透明的袋中裝有個(gè)紅球與個(gè)白球,這些球除顏色外都相同,將其攪勻.(1)從中摸出個(gè)球,恰為紅球的概率等于_________;(2)從中同時(shí)摸出個(gè)球,摸到紅球的概率是多少?(用畫樹狀圖或列表的方法寫出分析過程)26.(10分)為落實(shí)國(guó)務(wù)院房地產(chǎn)調(diào)控政策,使“居者有其屋”,某市加快了廉租房的建設(shè)力度.2015年市政府共投資3億元人民幣建設(shè)了廉租房12萬平方米,2017年計(jì)劃投資6.75億元人民幣建設(shè)廉租房,若在這兩年內(nèi)每年投資的增長(zhǎng)率相同.(1)求每年市政府投資的增長(zhǎng)率;(2)若這兩年內(nèi)的建設(shè)成本不變,問從2015到2017年這三年共建設(shè)了多少萬平方米廉租房?
參考答案一、選擇題(每小題3分,共30分)1、C【解析】根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的圖象可以得到a<0,b>0,c<0,由此可以判定y=ax+b經(jīng)過一、二、四象限,雙曲線在二、四象限.【詳解】根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的圖象,可得a<0,b>0,c<0,∴y=ax+b過一、二、四象限,雙曲線在二、四象限,∴C是正確的.故選C.【點(diǎn)睛】此題考查一次函數(shù),二次函數(shù),反比例函數(shù)中系數(shù)及常數(shù)項(xiàng)與圖象位置之間關(guān)系.2、C【分析】直接利用平行線分線段成比例定理即可得出結(jié)論.【詳解】∵l1∥l2∥l3,∴,∵,∴.故選:C.【點(diǎn)睛】本題考查了平行線分線段成比例定理,得出是解答本題的關(guān)鍵.3、C【分析】根據(jù)三角形外心的定義得到三角形外心為三邊的垂直平分線的交點(diǎn),然后利用基本作圖對(duì)各選項(xiàng)進(jìn)行判斷.【詳解】三角形外心為三邊的垂直平分線的交點(diǎn),由基本作圖得到C選項(xiàng)作了兩邊的垂直平分線,從而可用直尺成功找到三角形外心.故選C.【點(diǎn)睛】本題考查了作圖﹣基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個(gè)角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點(diǎn)作已知直線的垂線).也考查了三角形的外心.4、B【分析】根據(jù)特殊角的三角函數(shù)值即可求解.【詳解】=故的倒數(shù)是2,故選B.【點(diǎn)睛】此題主要考查倒數(shù),解題的關(guān)鍵是熟知特殊角的三角函數(shù)值.5、D【分析】直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】由“左加右減”的原則可知,將二次函數(shù)y=5x2的圖象先向右平移2個(gè)單位所得函數(shù)的解析式為:y=5(x﹣2)2,由“上加下減”的原則可知,將二次函數(shù)y=5(x﹣2)2的圖象先向下平移3個(gè)單位所得函數(shù)的解析式為:y=5(x﹣2)2﹣3,故選D.【點(diǎn)睛】本題考查了二次函數(shù)的圖象的平移變換,熟知函數(shù)圖象幾何變換的法則是解答此題的關(guān)鍵.6、C【詳解】解:∵m,n是關(guān)于x的一元二次方程的兩個(gè)解,∴m+n=3,mn=a.∵,即,∴,解得:a=﹣1.故選C.7、B【分析】根據(jù)算術(shù)平方根、絕對(duì)值的非負(fù)性分別解得的值,再計(jì)算即可.【詳解】故選:B.【點(diǎn)睛】本題考查二次根式、絕對(duì)值的非負(fù)性、冪的運(yùn)算等知識(shí),是重要考點(diǎn),難度較易,掌握相關(guān)知識(shí)是解題關(guān)鍵.8、D【分析】先求出AC,再根據(jù)正切的定義求解即可.【詳解】設(shè)BC=x,則AB=3x,由勾股定理得,AC=,tanB===,故選D.考點(diǎn):1.銳角三角函數(shù)的定義;2.勾股定理.9、C【分析】根據(jù)二次根式的性質(zhì)先化簡(jiǎn),再根據(jù)冪運(yùn)算的公式計(jì)算即可得出結(jié)果.【詳解】解:==,故選C.【點(diǎn)睛】本題考查了二次根式的性質(zhì)和同底數(shù)冪的乘方,熟練掌握二次根式的性質(zhì)和同底數(shù)冪的乘方進(jìn)行化簡(jiǎn)是解題的關(guān)鍵.10、D【解析】根據(jù)中心對(duì)稱圖形的概念判斷即可.【詳解】A、不是中心對(duì)稱圖形;B、不是中心對(duì)稱圖形;C、不是中心對(duì)稱圖形;D、是中心對(duì)稱圖形.故選D.【點(diǎn)睛】本題考查的是中心對(duì)稱圖形的概念,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(每小題3分,共24分)11、等腰三角形【分析】△ABC為等腰三角形,理由為:連接AD,由AB為圓O的直徑,利用直徑所對(duì)的圓周角為直角得到AD垂直于BC,再由BD=CD,得到AD垂直平分BC,利用線段垂直平分線定理得到AB=AC,可得證.【詳解】解:△ABC為等腰三角形,理由為:
連接AD,
∵AB為圓O的直徑,
∴∠ADB=90°,
∴AD⊥BC,又BD=CD,
∴AD垂直平分BC,
∴AB=AC,
則△ABC為等腰三角形.
故答案為:等腰三角形.【點(diǎn)睛】此題考查了圓周角定理,等腰三角形的性質(zhì),熟練掌握?qǐng)A周角定理是解本題的關(guān)鍵.12、【分析】作輔助線證明四邊形DFCE是矩形,得DF=CE,根據(jù)角平分線證明∠ACD=∠CDE即可解題.【詳解】解:過點(diǎn)D作DF⊥AC于F,∵,∴DF=3,∵,∴四邊形DFCE是矩形,CE=DF=3,在Rt△DEC中,tan∠CDE==,∵∠ACD=∠CDE,∴=.【點(diǎn)睛】本題考查了三角函數(shù)的正切值求值,矩形的性質(zhì),中等難度,根據(jù)角平分線證明∠ACD=∠CDE是解題關(guān)鍵.13、20【解析】先設(shè)出白球的個(gè)數(shù),根據(jù)白球的頻率求出白球的個(gè)數(shù),再用總的個(gè)數(shù)減去白球的個(gè)數(shù)即可.【詳解】設(shè)黃球的個(gè)數(shù)為x個(gè),∵共有黃色、白色的乒乓球50個(gè),黃球的頻率穩(wěn)定在60%,∴=60%,解得x=30,∴布袋中白色球的個(gè)數(shù)很可能是50-30=20(個(gè)).故答案為:20.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,熟練掌握該知識(shí)點(diǎn)是本題解題的關(guān)鍵.14、,【分析】根據(jù)條件得出AD=AP,AC=AB,確定旋轉(zhuǎn)中心,根據(jù)條件得出∠DAP=∠CAB=90°,確定旋轉(zhuǎn)角度數(shù).【詳解】解:∵△ABP是由△ACD按順時(shí)針方向旋轉(zhuǎn)而得,∴△ABP≌△ACD,∴∠DAC=∠PAB=60°,AD=AP,AC=AB,∴∠DAP=∠CAB=90°,∴△ABP是△ACD以點(diǎn)A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)90°得到的.故答案為:A,90°【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì),明確旋轉(zhuǎn)前后的圖形大小和形狀不變,正確確定對(duì)應(yīng)角,對(duì)應(yīng)邊是解答此題的關(guān)鍵.15、1.【解析】試題分析:根據(jù)題意得:=,解得:m=1.故答案為1.考點(diǎn):概率公式.16、【分析】先求出瓷磚的總數(shù),再求出白色瓷磚的個(gè)數(shù),利用概率公式即可得出結(jié)論.【詳解】由圖可知,共有5塊瓷磚,白色的有3塊,所以它停在白色地磚上的概率=.考點(diǎn):概率.17、【分析】先求得點(diǎn)C的坐標(biāo),再根據(jù)如果位似變換是以原點(diǎn)為位似中心,相似比為,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于或進(jìn)行解答.【詳解】菱形的頂點(diǎn)的坐標(biāo)為,;過點(diǎn)作,如圖,,,在和中,,∴,,,∴點(diǎn)C的坐標(biāo)為,以原點(diǎn)為位似中心、在點(diǎn)的異側(cè)將菱形縮小,使得到的菱形與原菱形的相似比為,,則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為.故答案為:.【點(diǎn)睛】本題考查了位似變換:位似圖形與坐標(biāo),在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于或.18、55°【分析】這道題可以根據(jù)CD為斜邊AB的中線得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,則∠BCD=90°-35°=55°.【詳解】如圖,∵CD為斜邊AB的中線∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°則∠BCD=90°-35°=55°故填:55°.【點(diǎn)睛】此題主要考查三角形內(nèi)角度求解,解題的關(guān)鍵是熟知直角三角形的性質(zhì).三、解答題(共66分)19、(1)詳見解析;(2)詳見解析;(3)的周長(zhǎng)與m值無關(guān),理由詳見解析.【分析】(1)由直角梯形ABCD中∠A為直角,得到三角形ADE為直角三角形,可得出兩銳角互余,再由DE與EC垂直,利用垂直的定義得到∠DEC為直角,利用平角的定義推出一對(duì)角互余,利用同角的余角相等可得出一對(duì)角相等,再由一對(duì)直角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似可得證;(2)延長(zhǎng)DE、CB交于F,證明△ADE≌△BFE,根據(jù)全等三角形的性質(zhì)得到DE=FE,AD=BF由CE⊥DE,得到直線CE是線段DF的垂直平分線,由線段垂直平分線的性質(zhì)得DC=FC.即可得到結(jié)論;(3)△BEC的周長(zhǎng)與m的值無關(guān),理由為:設(shè)AD=x,由AD+DE=a,表示出DE.在直角三角形ADE中,利用勾股定理列出關(guān)系式,整理后記作①,由AB﹣AE=EB,表示出BE,根據(jù)(1)得到:△ADE∽△BEC,由相似得比例,將各自表示出的式子代入,表示出BC與EC,由EB+EC+BC表示出三角形EBC的周長(zhǎng),提取a﹣m后,通分并利用同分母分式的加法法則計(jì)算,再利用平方差公式化簡(jiǎn)后,記作②,將①代入②,約分后得到一個(gè)不含m的式子,即周長(zhǎng)與m無關(guān).【詳解】(1)∵直角梯形ABCD中,∠A=90°,∴∠ADE+∠AED=90°,又∵DE⊥CE,∴∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,又∵∠A=∠B=90°,∴△ADE∽△BEC;(2)延長(zhǎng)DE、CB交于F,如圖2所示.∵AD∥BC,∴∠A=∠EBF,∠ADE=∠F.∵E是AB的中點(diǎn),∴AE=BE.在△ADE和△BFE中,∵∠A=∠EBF,∠ADE=∠F,AE=BE,∴△ADE≌△BFE,∴DE=FE,AD=BF.∵CE⊥DE,∴直線CE是線段DF的垂直平分線,∴DC=FC.∵FC=BC+BF=BC+AD,∴AD+BC=CD.(3)△BEC的周長(zhǎng)與m的值無關(guān),理由為:設(shè)AD=x,由AD+DE=AB=a,得:DE=a﹣x.在Rt△AED中,根據(jù)勾股定理得:AD2+AE2=DE2,即x2+m2=(a﹣x)2,整理得:a2﹣m2=2ax,…①在△EBC中,由AE=m,AB=a,得:BE=AB﹣AE=a﹣m.∵由(1)知△ADE∽△BEC,∴,即,解得:BC,EC,∴△BEC的周長(zhǎng)=BE+BC+EC=(a﹣m)=(a﹣m)(1)=(a﹣m)?,…②把①代入②得:△BEC的周長(zhǎng)=BE+BC+EC2a,則△BEC的周長(zhǎng)與m無關(guān).【點(diǎn)睛】本題是相似形綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),勾股定理,平行線的判定與性質(zhì),分式的化簡(jiǎn)求值,利用了轉(zhuǎn)化及整體代入的數(shù)學(xué)思想,做第三問時(shí)注意利用已證的結(jié)論.20、(1)y=x2+2x﹣3;(2)存在,點(diǎn)P坐標(biāo)為或;(3)點(diǎn)N的坐標(biāo)為(﹣4,1)【分析】(1)分別令y=0,x=0,可表示出A、B、C的坐標(biāo),從而表示△ABC的面積,求出a的值繼而即可得二次函數(shù)解析式;(2)如圖①,當(dāng)點(diǎn)P在x軸上方拋物線上時(shí),平移BC所在的直線過點(diǎn)O交x軸上方拋物線于點(diǎn)P,則有BC∥OP,此時(shí)∠POB=∠CBO,聯(lián)立拋物線得解析式和OP所在直線的解析式解方程組即可求解;當(dāng)點(diǎn)P在x軸下方時(shí),取BC的中點(diǎn)D,易知D點(diǎn)坐標(biāo)為(,),連接OD并延長(zhǎng)交x軸下方的拋物線于點(diǎn)P,由直角三角形斜邊中線定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,聯(lián)立拋物線的解析式和OP所在直線的解析式解方程組即可求解.(3)如圖②,通過點(diǎn)M到x軸的距離可表示△ABM的面積,由S△ABM=S△BNM,可證明點(diǎn)A、點(diǎn)N到直線BM的距離相等,即AN∥BM,通過角的轉(zhuǎn)化得到AM=BN,設(shè)點(diǎn)N的坐標(biāo),表示出BN的距離可求出點(diǎn)N.【詳解】(1)當(dāng)y=0時(shí),x2﹣(a+1)x+a=0,解得x1=1,x2=a,當(dāng)x=0,y=a∴點(diǎn)C坐標(biāo)為(0,a),∵C(0,a)在x軸下方∴a<0∵點(diǎn)A位于點(diǎn)B的左側(cè),∴點(diǎn)A坐標(biāo)為(a,0),點(diǎn)B坐標(biāo)為(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面積為1,∴,∴a1=﹣3,a2=4(因?yàn)閍<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)設(shè)直線BC:y=kx﹣3,則0=k﹣3,∴k=3;①當(dāng)點(diǎn)P在x軸上方時(shí),直線OP的函數(shù)表達(dá)式為y=3x,則,∴,,∴點(diǎn)P坐標(biāo)為;②當(dāng)點(diǎn)P在x軸下方時(shí),直線OP的函數(shù)表達(dá)式為y=﹣3x,則∴,,∴點(diǎn)P坐標(biāo)為,綜上可得,點(diǎn)P坐標(biāo)為或;(3)如圖,過點(diǎn)A作AE⊥BM于點(diǎn)E,過點(diǎn)N作NF⊥BM于點(diǎn)F,設(shè)AM與BN交于點(diǎn)G,延長(zhǎng)MN與x軸交于點(diǎn)H;∵AB=4,點(diǎn)M到x軸的距離為d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四邊形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三點(diǎn)的橫坐標(biāo)相同,且BH=MH,∵M(jìn)是拋物線上一點(diǎn),∴可設(shè)點(diǎn)M的坐標(biāo)為(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴點(diǎn)N的橫坐標(biāo)為﹣4,可設(shè)直線AC:y=kx﹣3,則0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,當(dāng)x=﹣4時(shí),y=﹣(﹣4)﹣3=1,∴點(diǎn)N的坐標(biāo)為(﹣4,1).【點(diǎn)睛】本題主要考查二次函數(shù)的圖象與性質(zhì),還涉及到全等三角形的判定及其性質(zhì)、三角形面積公式等知識(shí)點(diǎn),綜合性較強(qiáng),解題的關(guān)鍵是熟練掌握二次函數(shù)的圖象與性質(zhì).21、(2)y=﹣x2+2x+2;(2)點(diǎn)P的坐標(biāo)為(0,2+);(2)MD2=n2﹣n+3;點(diǎn)M的坐標(biāo)為(,)或(,).【分析】(2)根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;(2)過點(diǎn)E作EF⊥x軸于點(diǎn)F,根據(jù)旋轉(zhuǎn)的性質(zhì)及同角的余角相等,可證出△ODP≌△FED(AAS),由拋物線的解析式可得出點(diǎn)D的坐標(biāo),進(jìn)而可得出OD的長(zhǎng)度,利用全等三角形的性質(zhì)可得出EF的長(zhǎng)度,再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出DF,OP的長(zhǎng),結(jié)合點(diǎn)P在y軸正半軸即可得出點(diǎn)P的坐標(biāo);(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出m2﹣2m=2﹣n,根據(jù)點(diǎn)D,M的坐標(biāo),利用兩點(diǎn)間的距離公式可得出MD2=n2﹣n+3,利用配方法可得出當(dāng)MD2取得最小值時(shí)n的值,再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出當(dāng)MD2取得最小值時(shí)點(diǎn)M的坐標(biāo).【詳解】(2)將A(﹣2,0),B(2,0)代入y=ax2+bx+2,得:,解得:,∴拋物線的解析式為y=﹣x2+2x+2.(2)過點(diǎn)E作EF⊥x軸于點(diǎn)F,如圖所示.∵∠OPD+∠ODP=90°,∠ODP+∠FDE=90°,∴∠OPD=∠FDE.在△ODP和△FED中,,∴△ODP≌△FED(AAS),∴DF=OP,EF=DO.∵拋物線的解析式為y=﹣x2+2x+2=﹣(x﹣2)2+3,∴點(diǎn)D的坐標(biāo)為(2,0),∴EF=DO=2.當(dāng)y=2時(shí),﹣x2+2x+2=2,解得:x2=2﹣(舍去),x2=2+,∴DF=OP=2+,∴點(diǎn)P的坐標(biāo)為(0,2+).(2)∵點(diǎn)M(m,n)是拋物線上的一個(gè)動(dòng)點(diǎn),∴n=﹣m2+2m+2,∴m2﹣2m=2﹣n.∵點(diǎn)D的坐標(biāo)為(2,0),∴MD2=(m﹣2)2+(n﹣0)2=m2﹣2m+2+n2=2﹣n+2+n2=n2﹣n+3.∵n2﹣n+3=(n﹣)2+,∴當(dāng)n=時(shí),MD2取得最小值,此時(shí)﹣m2+2m+2=,解得:m2=,m2=.∴MD2=n2﹣n+3,當(dāng)MD2取得最小值時(shí),點(diǎn)M的坐標(biāo)為(,)或(,).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、全等三角形的判定與性質(zhì)、二次函數(shù)的最值以及兩點(diǎn)間的距離公式,解題的關(guān)鍵是:(2)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用全等三角形的性質(zhì)及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出OP的長(zhǎng);(2)利用兩點(diǎn)間的距離公式結(jié)合二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出MD2=n2﹣n+3.22、(1);點(diǎn);(2);(3)存在,Q1(1,-1),Q2(1,2),Q3(1,4),Q4(1,-5).【分析】(1)用待定系數(shù)法可求拋物線的解析式,進(jìn)行配成頂點(diǎn)式即可寫出頂點(diǎn)坐標(biāo);(2)將直線與拋物線聯(lián)立,通過根與系數(shù)關(guān)系得到,,再通過得出,通過變形得出代入即可求出的值;(3)分:,,三種情況分別利用勾股定理進(jìn)行討論即可.【詳解】(1)∵,,∵繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,∴點(diǎn)的坐標(biāo)為:,將點(diǎn)A,B代入拋物線中得解得∴此拋物線的解析式為:∵;∴點(diǎn)(2)直線:與拋物線的對(duì)稱軸交點(diǎn)的坐標(biāo)為,交拋物線于,,由得:∴,∵,∴∴∴∴∴(3)存在,或,,∴設(shè)點(diǎn),若,則即∴或若,則即∴若,則即∴即Q1(1,-1),Q2(1,2),Q3(1,4),Q4(1,-5).【點(diǎn)睛】本題主要考查二次函數(shù)與幾何綜合,掌握二次函數(shù)的圖象和性質(zhì),分情況討論是解題的關(guān)鍵.23、(1)作圖見解析;(2)米.【分析】(1)連接AC,過D點(diǎn)作AC的平行線即可;(2)過M作MN⊥DE于N,利用相似三角形列出比例式求出旗桿的高度即可.【詳解】(1)如圖所示,線段MG和GE是旗桿在陽光下形成的影子.(2)過點(diǎn)M作MN⊥DE于點(diǎn)N.設(shè)旗桿的影子落在墻上的高度為xm,由題意得△DMN∽△ACB,∴.又∵AB=1.6m,BC=2.4m,DN=DE-NE=(15-x)m,MN=EG=16m,∴,解得x=.答:旗桿的影子落在墻上的高度為m.【點(diǎn)睛】本題考查了相似三角形的知識(shí),解題的關(guān)鍵是正確的構(gòu)造直角三角形.24、(1)200;(2)答案見解析;(3)240人.【分析】(1)由圖1可得喜歡“B項(xiàng)運(yùn)動(dòng)”的有10人;由圖2可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- B集團(tuán)超大型壓鑄島項(xiàng)目風(fēng)險(xiǎn)管理研究
- 快樂社區(qū)義工活動(dòng)記事作文9篇范文
- 那一刻我長(zhǎng)大了500字單元作文欣賞15篇
- 讀十二生肖的故事后感300字14篇
- 唐宋詩人風(fēng)格比較鑒賞教學(xué)教案
- 當(dāng)代教育實(shí)踐與教學(xué)研究 官網(wǎng)
- 學(xué)習(xí)路上的啟示議論文分享心得體會(huì)(15篇)
- 移植后口腔黏膜炎防治與管理
- 闌尾炎疾病簡(jiǎn)介
- 保護(hù)動(dòng)物的作文300字范文8篇范文
- DG-TJ08-2433A-2023 外墻保溫一體化系統(tǒng)應(yīng)用技術(shù)標(biāo)準(zhǔn)(預(yù)制混凝土反打保溫外墻)
- 教師法制教育培訓(xùn)課件
- 眾包物流模式下的資源整合與分配
- 鐵路貨運(yùn)流程課件
- 四川省成都市成華區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)
- 慢性硬膜下血腫護(hù)理要點(diǎn)大揭秘
- 管工基礎(chǔ)知識(shí)培訓(xùn)課件
- 成人氣管切開拔管中國(guó)專家共識(shí)解讀
- “微”力量微博營(yíng)銷
- 2022-2023學(xué)年山東省菏澤市成武縣人教版四年級(jí)下冊(cè)期末考試數(shù)學(xué)試卷(解析版)
- 浙江省舟山市2024屆數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
評(píng)論
0/150
提交評(píng)論