2024屆吉林省第二實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第1頁
2024屆吉林省第二實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第2頁
2024屆吉林省第二實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第3頁
2024屆吉林省第二實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第4頁
2024屆吉林省第二實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆吉林省第二實驗學(xué)校數(shù)學(xué)九上期末質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,△ABC的頂點都是正方形網(wǎng)格中的格點,則sin∠ABC等于(

)A. B. C. D.2.關(guān)于x的一元二次方程x2+bx+c=0的兩個實數(shù)根分別為﹣2和3,則()A.b=1,c=﹣6 B.b=﹣1,c=﹣6C.b=5,c=﹣6 D.b=﹣1,c=63.下列四張印有汽車品牌標(biāo)志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.4.方程x2-4=0的解是A.x=2 B.x=-2 C.x=±2 D.x=±45.拋物線y=﹣(x+1)2﹣3的頂點坐標(biāo)是()A.(1,﹣3) B.(1,3) C.(﹣1,3) D.(﹣1,﹣3)6.下列四個銀行標(biāo)志中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.7.下列事件中是不可能事件的是()A.三角形內(nèi)角和小于180° B.兩實數(shù)之和為正C.買體育彩票中獎 D.拋一枚硬幣2次都正面朝上8.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個9.如圖,AB是半圓O的直徑,AC為弦,OD⊥AC于D,過點O作OE∥AC交半圓O于點E,過點E作EF⊥AB于F.若AC=2,則OF的長為()A. B. C.1 D.210.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,二、填空題(每小題3分,共24分)11.已知如圖,是的中位線,點是的中點,的延長線交于點A,那么=__________.12.若一個正六邊形的周長為24,則該正六邊形的面積為▲.13.若點在反比例函數(shù)的圖像上,則______.14.大自然是美的設(shè)計師,即使是一片小小的樹葉,也蘊含著“黃金分割”,如圖,P為AB的黃金分割點(AP>PB),如果AB的長度為10cm,那么AP的長度為_____cm.15.將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線,若直線y=x+b與這兩條拋物線共有3個公共點,則b的取值范圍為_____.16.在比例尺為1∶500000的地圖上,量得A、B兩地的距離為3cm,則A、B兩地的實際距離為_____km.17.已知中,,,,,垂足為點,以點為圓心作,使得點在外,且點在內(nèi),設(shè)的半徑為,那么的取值范圍是______.18.如圖,在四邊形中,,,,.若,則______.三、解答題(共66分)19.(10分)計算:|2﹣|+()﹣1+﹣2cos45°20.(6分)如圖,對稱軸是的拋物線與軸交于兩點,與軸交于點,求拋物線的函數(shù)表達式;若點是直線下方的拋物線上的動點,求的面積的最大值;若點在拋物線對稱軸左側(cè)的拋物線上運動,過點作鈾于點,交直線于點,且,求點的坐標(biāo);在對稱軸上是否存在一點,使的周長最小,若存在,請求出點的坐標(biāo)和周長的最小值;若不存在,請說明理由.21.(6分)如圖,一次函數(shù)y=kx+b(b=0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標(biāo)為(﹣3,4),點B的坐標(biāo)為(6,n)(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)連接OB,求△AOB的面積;(3)若kx+b<,直接寫出x的取值范圍.22.(8分)如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:(1)OA=_____,(2)作出∠AOB的平分線并在其上標(biāo)出一個點Q,使.23.(8分)解方程:(1)x2﹣2x﹣1=0(2)2(x﹣3)2=x2﹣924.(8分)如圖,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點G,連接CF.(1)求證:△DAE≌△DCF;(2)求證:△ABG∽△CFG;(3)若正方形ABCD的的邊長為2,G為BC的中點,求EF的長.25.(10分)如圖,已知⊙O的直徑d=10,弦AB與弦CD平行,它們之間的距離為7,且AB=6,求弦CD的長.26.(10分)數(shù)學(xué)活動課上,老師提出問題:如圖1,有一張長,寬的長方形紙板,在紙板的四個角裁去四個相同的小正方形,然后把四邊折起來,做成-一個無蓋的盒子,問小正方形的邊長為多少時,盒子的體積最大.下面是探究過程,請補充完整:(1)設(shè)小正方形的邊長為,體積為,根據(jù)長方體的體積公式得到和的關(guān)系式;(2)確定自變量的取值范圍是(3)列出與的幾組對應(yīng)值.······(4)在平面直角坐標(biāo)系中,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點畫出該函數(shù)的圖象如圖2,結(jié)合畫出的函數(shù)圖象,當(dāng)小正方形的邊長約為時,盒子的體積最大,最大值約為.(估讀值時精確到)

參考答案一、選擇題(每小題3分,共30分)1、C【解析】試題解析:設(shè)正方形網(wǎng)格每個小正方形邊長為1,則BC邊上的高為2,則,.故本題應(yīng)選C.2、B【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系得到﹣2+3=﹣b,﹣2×3=c,即可得到b與c的值.【詳解】由一元二次方程根與系數(shù)的關(guān)系得:﹣2+3=﹣b,﹣2×3=c,∴b=﹣1,c=﹣6故選:B.【點睛】本題主要考查一元二次方程根與系數(shù)的關(guān)系,掌握一元二次方程ax2+bx+c=0的兩個根滿足,是解題的關(guān)鍵.3、C【解析】試題分析:由中心對稱圖形的概念可知,這四個圖形中只有第三個是中心對稱圖形,故答案選C.考點:中心對稱圖形的概念.4、C【分析】方程變形為x1=4,再把方程兩邊直接開方得到x=±1.【詳解】解:x1=4,∴x=±1.故選C.5、D【解析】根據(jù)二次函數(shù)頂點式解析式寫出頂點坐標(biāo)即可.【詳解】解:拋物線y=﹣(x+1)2﹣3的頂點坐標(biāo)是(﹣1,﹣3).故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì),熟練掌握利用頂點式解析式寫出頂點坐標(biāo)的方法是解題的關(guān)鍵.6、C【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念逐一進行判斷即可得.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故不符合題意;C、是軸對稱圖形,也是中心對稱圖形,故符合題意;D、是軸對稱圖形,不是中心對稱圖形,故不符合題意,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),如果把一個圖形繞某個點旋轉(zhuǎn)180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.7、A【解析】根據(jù)三角形的內(nèi)角和定理,可知:“三角形內(nèi)角和等于180°”,故是不可能事件;根據(jù)實數(shù)的加法,可知兩實數(shù)之和可能為正,可能是0,可能為負,故是可能事件;根據(jù)買彩票可能中獎,故可知是可能事件;根據(jù)硬幣的特點,拋一枚硬幣2次有可能兩次都正面朝上,故是可能事件.故選A.8、C【詳解】試題解析:①∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,所以①錯誤;②∵拋物線開口向上,∴a>0,∵拋物線的對稱軸在y軸的左側(cè),∴a、b同號,∴b>0,∵拋物線與y軸交點在x軸上方,∴c>0,∴abc>0,所以②正確;③∵x=﹣1時,y<0,即a﹣b+c<0,∵對稱軸為直線x=﹣1,∴,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正確;④∵拋物線的對稱軸為直線x=﹣1,∴x=﹣2和x=0時的函數(shù)值相等,即x=﹣2時,y>0,∴4a﹣2b+c>0,所以④正確.所以本題正確的有:②③④,三個,故選C.9、C【詳解】解:∵OD⊥AC,∴AD=AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故選C.【點睛】本題考查1.全等三角形的判定與性質(zhì);2.垂徑定理,掌握相關(guān)性質(zhì)定理正確推理論證是解題關(guān)鍵.10、D【分析】先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當(dāng)?shù)姆椒ㄊ墙忸}關(guān)鍵.二、填空題(每小題3分,共24分)11、1:1【分析】連結(jié)AP并延長交BC于點F,則S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,則S△CPE:S△ABC=1:1.【詳解】解:連結(jié)AP并延長交BC于點F,∵DE△ABC的中位線,∴E是AC的中點,∴S△CPE=S△AEP,∵點P是DE的中點,∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位線,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案為1:1.【點睛】本題考查三角形的中位線定理,相似三角形的判定和性質(zhì),三角形的面積等知識,解題的關(guān)鍵是熟練掌握基本知識.12、【解析】根據(jù)題意畫出圖形,如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°.∵OB=OC,∴△OBC是等邊三角形.∴∠OBC=60°.∵正六邊形ABCDEF的周長為21,∴BC=21÷6=1.∴OB=BC=1,∴BM=OB·sin∠OBC=1·.∴.13、-1【解析】將點代入反比例函數(shù),即可求出m的值.【詳解】解:將點代入反比例函數(shù)得:.故答案為:-1.【點睛】本題主要考查反比例函數(shù)圖象上點的坐標(biāo)特征,只要點在函數(shù)的圖象上,就一定滿足函數(shù)的解析式14、5-5【分析】利用黃金分割的定義計算出AP即可.【詳解】解:∵P為AB的黃金分割點(AP>PB),∴AP=AB=×10=5﹣5(cm),故答案為5﹣5【點睛】本題考查黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.15、0<b<【分析】畫出圖象,利用圖象法解決即可.【詳解】解:將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線為y=﹣x2+4x(0≤x≤4)畫出函數(shù)如圖,由圖象可知,當(dāng)直線y=x+b經(jīng)過原點時有兩個公共點,此時b=0,解,整理得x2﹣3x+b=0,若直線y=x+b與這兩條拋物線共有3個公共點,則△=9﹣4b>0,解得所以,當(dāng)0<b<時,直線y=x+b與這兩條拋物線共有3個公共點,故答案為.【點睛】本題考查了二次函數(shù)圖像的折疊問題,解決本題的關(guān)鍵是能夠根據(jù)題意畫出二次函數(shù)折疊后的圖像,掌握二次函數(shù)與一元二次方程的關(guān)系.16、1【分析】由在比例尺為1:50000的地圖上,量得A、B兩地的圖上距離AB=3cm,根據(jù)比例尺的定義,可求得兩地的實際距離.【詳解】解:∵比例尺為1:500000,量得兩地的距離是3厘米,

∴A、B兩地的實際距離3×500000=100000cm=1km,

故答案為1.【點睛】此題考查了比例尺的性質(zhì).注意掌握比例尺的定義,注意單位要統(tǒng)一.17、【分析】先根據(jù)勾股定理求出AB的長,進而得出CD的長,再求出AD,BD的長,由點與圓的位置關(guān)系即可得出結(jié)論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,

∴AB==1.

∵CD⊥AB,∴CD=.

∵AD?BD=CD2,

設(shè)AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.

∵點A在圓外,點B在圓內(nèi),∴BD<r<AD,

∴r的范圍是,

故答案為:.【點睛】本題考查的是點與圓的位置關(guān)系,熟知點與圓的三種位置關(guān)系是解答此題的關(guān)鍵.18、【分析】首先在△ABC中,根據(jù)三角函數(shù)值計算出AC的長,然后根據(jù)正切定義可算出.【詳解】∵,,∴,∵AB=2,∴AC=6,∵AC⊥CD,∴,∴故答案為:.【點睛】本題考查了解直角三角形,熟練掌握正弦,正切的定義是解題的關(guān)鍵.三、解答題(共66分)19、1【分析】根據(jù)絕對值、負次數(shù)冪、二次根式、三角函數(shù)的性質(zhì)計算即可.【詳解】原式=2﹣+3+2﹣2×=2﹣+3+2﹣=(2+3)+(﹣+2﹣)=1+0=1.【點睛】本題考查絕對值、負次數(shù)冪、二次根式、三角函數(shù)的計算,關(guān)鍵在于牢記相關(guān)基礎(chǔ)知識.20、(1)y=x2+x﹣2;(2)△PBC面積的最大值為2;(3)P(﹣3,﹣)或P(﹣5,);(4)存在,點M(﹣1,﹣),△AMC周長的最小值為.【分析】(1)先由拋物線的對稱性確定點B坐標(biāo),再利用待定系數(shù)法求解即可;(2)先利用待定系數(shù)法求得直線BC的解析式,然后設(shè)出點P的橫坐標(biāo)為t,則可用含t的代數(shù)式表示出PE的長,根據(jù)面積的和差可得關(guān)于t的二次函數(shù),再根據(jù)二次函數(shù)的性質(zhì)可得答案;(3)先設(shè)D(m,0),然后用m的代數(shù)式表示出E點和P點坐標(biāo),由條件可得關(guān)于m的方程,解出m的值即可得解;(4)要使周長最小,由于AC是定值,所以只要使MA+MC的值最小即可,由于點B是點A關(guān)于拋物線對稱軸的對稱點,則點M就是BC與拋物線對稱軸的交點,由于點M的橫坐標(biāo)已知,則其縱坐標(biāo)易得,再根據(jù)勾股定理求出AC+BC,即為周長的最小值.【詳解】解:(1)∵對稱軸為x=﹣1的拋物線與x軸交于A(2,0),B兩點,∴B(﹣4,0).設(shè)拋物線解析式是:y=a(x+4)(x﹣2),把C(0,﹣2)代入,得:a(0+4)(0﹣2)=﹣2,解得a=,所以該拋物線解析式是:y=(x+4)(x﹣2)=x2+x﹣2;(2)設(shè)直線BC的解析式為:y=mx+n,把B(﹣4,0),C(0,﹣2)代入得:,解得:,∴直線BC的解析式為:y=﹣x﹣2,作PQ∥y軸交BC于Q,如圖1,設(shè)P(t,t2+t﹣2),則Q(t,﹣t﹣2),∴PQ=﹣t﹣2﹣(t2+t﹣2)=﹣t2﹣t,∴S△PBC=S△PBQ+S△PCQ=?PQ?4=﹣t2﹣2t=﹣(t+2)2+2,∴當(dāng)t=﹣2時,△PBC面積有最大值,最大值為2;(3)設(shè)D(m,0),∵DP∥y軸,∴E(m,﹣m﹣2),P(m,m2+m﹣2),∵PE=OD,∴,∴m2+3m=0或m2+5m=0,解得:m=﹣3,m=0(舍去)或m=﹣5,m=0(舍去),∴P(﹣3,﹣)或P(﹣5,);(4)∵點A、B關(guān)于拋物線的對稱軸對稱,∴當(dāng)點M為直線BC與對稱軸的交點時,MA+MC的值最小,如圖2,此時△AMC的周長最?。咧本€BC的解析式為y=﹣x﹣2,拋物線的對稱軸為直線x=﹣1,∴當(dāng)x=﹣1時,y=﹣.∴拋物線對稱軸上存在點M(﹣1,﹣)符合題意,此時△AMC周長的最小值為AC+BC=.【點睛】此題是二次函數(shù)綜合題,主要考查了利用待定系數(shù)法確定函數(shù)解析式、二次函數(shù)的性質(zhì)、一元二次方程的解法、二次函數(shù)圖象上的坐標(biāo)特征和兩線段之和最小等知識,屬于??碱}型,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)和函數(shù)圖象上點的坐標(biāo)特征.21、(1),y=﹣x+2;(2)9;(3)x>6或﹣3<x<1【分析】(1)根據(jù)A的坐標(biāo)求出反比例函數(shù)的解析式,求出B點的坐標(biāo),再把A、B的坐標(biāo)代入y=kx+b,求出一次函數(shù)的解析式即可;(2)先求出點C的坐標(biāo),再根據(jù)三角形的面積公式求出即可;(3)根據(jù)A、B的坐標(biāo)和圖象得出即可.【詳解】解:(1)把A點的坐標(biāo)(﹣3,4)代入y=得:m=﹣12,即反比例函數(shù)的解析式是y=,把B點的坐標(biāo)(6,n)代入y=﹣得:n=﹣2,即B點的坐標(biāo)是(6,﹣2),把A、B的坐標(biāo)代入y=kx+b得:,解得:k=﹣,b=2,所以一次函數(shù)的解析式是y=﹣x+2;(2)設(shè)一次函數(shù)y=﹣x+2與x軸的交點是C,y=﹣x+2,當(dāng)y=1時,x=3,即OC=3,∵A(﹣3,4),B(6,﹣2),∴△AOB的面積S=S△AOC+S△BOC==9;(3)當(dāng)kx+b<時x的取值范圍是x>6或﹣3<x<1.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的綜合問題,掌握一次函數(shù)和反比例函數(shù)的圖象和性質(zhì)、三角形面積公式是解題的關(guān)鍵.22、5【解析】(1)依據(jù)勾股定理即可得到OA的長;(2)取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.【詳解】解:(1)由勾股定理,可得AO==5,故答案為5;(2)如圖,取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;如圖,取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【點睛】本題考查作圖﹣復(fù)雜作圖、角平分線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握等腰三角形的性質(zhì)的應(yīng)用,角平分線的性質(zhì)的應(yīng)用,勾股定理以及相似三角形的性質(zhì).23、(1),;(2)x1=3,x2=9.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【詳解】解:(1)∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,∴x=,即,.(2)∵2(x﹣3)2=x2﹣9,∴2(x﹣3)2=(x+3)(x﹣3),∴2(x﹣3)2﹣(x+3)(x﹣3)=0,∴(x﹣3)(x﹣9)=0,∴x﹣3=0或x﹣9=0,解得x1=3,x2=9.【點睛】本題主要考查了解一元二次方程的配方法和因式分解法,掌握解一元二次方程是解題的關(guān)鍵.24、(1)證明見解析;(2)證明見解析;(3)EF=.【分析】(1)根據(jù)正方形的性質(zhì)有AD=CD,根據(jù)等腰直角三角形的性質(zhì)有DE=DF,已知兩邊嘗試找其夾角對應(yīng)相等,根據(jù)等角的余角相等可得,∠ADE=∠CDF,據(jù)此可證;(2)此題有多種方法可解,可以延長BA交DE與M,結(jié)合第(1)問全等三角形的結(jié)論用等角做差求得∠BAG=∠FCG,再加上一對對頂角相等即可證明;(3)根據(jù)第(2)問相似三角形的結(jié)論,易得,在Rt△CFG中得到了兩直角邊CF與FG的倍數(shù)關(guān)系,再運用勾股定理即可解出CF與FG的長度,又AE=CF,即可解答.【詳解】證明:(1)∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∠=∠,;∴△ADE≌△CDF(SAS);(2)延長BA到M,交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論