2024屆廣東省深圳實驗三部聯(lián)考九年級數(shù)學第一學期期末調研模擬試題含解析_第1頁
2024屆廣東省深圳實驗三部聯(lián)考九年級數(shù)學第一學期期末調研模擬試題含解析_第2頁
2024屆廣東省深圳實驗三部聯(lián)考九年級數(shù)學第一學期期末調研模擬試題含解析_第3頁
2024屆廣東省深圳實驗三部聯(lián)考九年級數(shù)學第一學期期末調研模擬試題含解析_第4頁
2024屆廣東省深圳實驗三部聯(lián)考九年級數(shù)學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省深圳實驗三部聯(lián)考九年級數(shù)學第一學期期末調研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.將函數(shù)的圖象向右平移個單位,再向下平移個單位,可得到的拋物線是()A. B.C. D.2.在Rt△ABC中,∠C=90°,AB=5,BC=3,則tanA的值是()A. B. C. D.3.如圖,AC是電桿AB的一根拉線,現(xiàn)測得BC=6米,∠ABC=90°,∠ACB=52°,則拉線AC的長為(

)米.A.

B.

C.

D.4.下列四種說法:①如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等;②將1010減去它的,再減去余下的,再減去余下的,再減去余下的,……,依此類推,直到最后減去余下的,最后的結果是1;③實驗的次數(shù)越多,頻率越靠近理論概率;④對于任何實數(shù)x、y,多項式的值不小于1.其中正確的個數(shù)是()A.1 B.1 C.3 D.45.菱形的周長為8cm,高為1cm,則該菱形兩鄰角度數(shù)比為()A.3:1 B.4:1 C.5:1 D.6:16.如圖,BA=BC,∠ABC=80°,將△BDC繞點B逆時針旋轉至△BEA處,點E,A分別是點D,C旋轉后的對應點,連接DE,則∠BED為()A.50° B.55° C.60° D.65°7.如圖,已知的內接正方形邊長為2,則的半徑是()A.1 B.2 C. D.8.如圖,將一個大平行四邊形在一角剪去一個小平行四邊形,如果用直尺畫一條直線將其剩余部分分割成面積相等的兩部分,這樣的不同的直線一共可以畫出()A.1條 B.2條 C.3條 D.4條9.若拋物線的對稱軸是直線,則方程的解是()A., B., C., D.,10.在△ABC中,AD是BC邊上的高,∠C=45°,sinB=,AD=1.則△ABC的面積為()A.1 B. C. D.2二、填空題(每小題3分,共24分)11.代數(shù)式有意義時,x應滿足的條件是______.12.如圖,是的直徑,點在上,且,垂足為,,,則__________.13.某公園平面圖上有一條長12cm的綠化帶.如果比例尺為1:2000,那么這條綠化帶的實際長度為_____.14.小華在距離路燈6米的地方,發(fā)現(xiàn)自己在地面上的影長是2米,若小華的身高為1.6米,那么路燈離地面的高度是_____米.15.是關于的一元二次方程的一個根,則___________16.如圖,點是矩形中邊上一點,將沿折疊為,點落在邊上,若,,則________.17.若關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根,則m的值為______.18.半徑為6cm的圓內接正四邊形的邊長是____cm..三、解答題(共66分)19.(10分)2019年第六屆世界互聯(lián)網(wǎng)大會在烏鎮(zhèn)召開,小南和小西參加了某分會場的志愿服務工作,本次志愿服務工作一共設置了三個崗位,分別是引導員、聯(lián)絡員和咨詢員.請你用畫樹狀圖或列表法求出小南和小西恰好被分配到同一個崗位進行志愿服務的概率.20.(6分)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點B作⊙O的切線交AC的延長線于點D.(1)求證:△ABC∽△BDC.(2)若AC=8,BC=6,求△BDC的面積.21.(6分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.22.(8分)已知關于x的方程x2﹣(m+2)x+2m=1.(1)若該方程的一個根為x=1,求m的值;(2)求證:不論m取何實數(shù),該方程總有兩個實數(shù)根.23.(8分)某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個柱子,點恰好在水面中心,安裝在柱子頂端處的圓形噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過的任意平面上,水流噴出的高度與水平距離之間的關系如圖所示,建立平面直角坐標系,右邊拋物線的關系式為.請完成下列問題:(1)將化為的形式,并寫出噴出的水流距水平面的最大高度是多少米;(2)寫出左邊那條拋物線的表達式;(3)不計其他因素,若要使噴出的水流落在池內,水池的直徑至少要多少米?24.(8分)解方程:x+3=x(x+3)25.(10分)已知銳角△ABC內接于⊙O,OD⊥BC于點D.(1)若∠BAC=60°,⊙O的半徑為4,求BC的長;(2)請用無刻度直尺畫出△ABC的角平分線AM.(不寫作法,保留作圖痕跡)26.(10分)小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn):每月的銷售量y(件)與銷售單價x(元/件)之間的關系可近似地看作一次函數(shù)y=-10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.(1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元/件)之間的函數(shù)表達式,并確定自變量x的取值范圍;(2)當銷售單價定為多少元/件時,每月可獲得最大利潤?每月的最大利潤是多少?

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)圖象平移的過程易得新拋物線的頂點,根據(jù)頂點式及平移前后二次項的系數(shù)不變可得新拋物線的解析式.【詳解】解:原拋物線的頂點為,向右平移1個單位,再向下平移3個單位,那么新拋物線的頂點為;可設新拋物線的解析式為,代入得:,故選:A.【點睛】主要考查了二次函數(shù)圖象與幾何變換,拋物線平移不改變二次項的系數(shù)的值,解決本題的關鍵是得到新拋物線的頂點坐標.2、A【解析】由勾股定理,得AC=,由正切函數(shù)的定義,得tanA=,故選A.3、C【分析】根據(jù)余弦定義:即可解答.【詳解】解:,,米,米;故選C.【點睛】此題考查了解直角三角形的應用,將其轉化為解直角三角形的問題是本題的關鍵,用到的知識點是余弦的定義.4、C【分析】畫圖可判斷①;將②轉化為算式的形式,求解判斷;③是用頻率估計概率的考查;④中配成平方的形式分析可得.【詳解】如下圖,∠1=∠1,∠1+∠3=180°,即兩邊都平行的角,可能相等,也可能互補,①錯誤;②可用算式表示為:,正確;實驗次數(shù)越多,則頻率越接近概率,③正確;∵≥0,≥0∴≥1,④正確故選:C【點睛】本題考查平行的性質、有理數(shù)的計算、頻率與概率的關系、利用配方法求最值問題,注意②中,我們要將題干文字轉化為算式分析.5、C【分析】菱形的性質;含30度角的直角三角形的性質.【詳解】如圖所示,根據(jù)已知可得到菱形的邊長為2cm,從而可得到高所對的角為30°,相鄰的角為150°,則該菱形兩鄰角度數(shù)比為5:1,故選C.6、A【分析】首先根據(jù)旋轉的性質,得出∠CBD=∠ABE,BD=BE;其次結合圖形,由等量代換,得∠EBD=∠ABC;最后根據(jù)等腰三角形的性質,得出∠BED=∠BDE,利用三角形內角和定理求解即可.【詳解】∵△BDC繞點B逆時針旋轉至△BEA處,點E,A分別是點D,C旋轉后的對應點,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故選:A.【點睛】本題主要考查了旋轉的性質、等腰三角形的性質,以及三角形內角和定理.解題的關鍵是根據(jù)旋轉的性質得出旋轉前后的對應角、對應邊分別相等,利用等腰三角形的性質得出“等邊對等角”,再結合三角形內角和定理,即可得解.7、C【分析】如圖,連接BD,根據(jù)圓周角定理可得BD為⊙O的直徑,利用勾股定理求出BD的長,進而可得⊙O的半徑的長.【詳解】如圖,連接BD,∵四邊形ABCD是正方形,邊長為2,∴BC=CD=2,∠BCD=90°,∴BD==2,∵正方形ABCD是⊙O的內接四邊形,∴BD是⊙O的直徑,∴⊙O的半徑是=,故選:C.【點睛】本題考查正方形的性質、圓周角定理及勾股定理,根據(jù)圓周角定理得出BD是直徑是解題關鍵.8、C【分析】利用平行四邊形的性質分割平行四邊形即可.【詳解】解:如圖所示,這樣的不同的直線一共可以畫出三條,故答案為:1.【點睛】本題考查平行四邊形的性質,解題的關鍵是掌握平行四邊形的中心對稱性.9、C【分析】利用對稱軸公式求出b的值,然后解方程.【詳解】解:由題意:解得:b=-4∴解得:,故選:C【點睛】本題考查拋物線對稱軸公式及解一元二次方程,熟記公式正確計算是本題的解題關鍵.10、C【分析】先由三角形的高的定義得出∠ADB=∠ADC=90°,解Rt△ADB,得出AB=3,根據(jù)勾股定理求出BD=2,解Rt△ADC,得出DC=1,然后根據(jù)三角形的面積公式計算即可;【詳解】在Rt△ABD中,∵sinB==,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴BD.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=2+1,∴S△ABC=?BC?AD=×(2+1)×1=,故選:C.【點睛】本題考查了三角形的面積問題,掌握三角形的面積公式是解題的關鍵.二、填空題(每小題3分,共24分)11、.【解析】直接利用二次根式的定義和分數(shù)有意義求出x的取值范圍.【詳解】解:代數(shù)式有意義,可得:,所以,故答案為:.【點睛】本題考查了二次根式有意義的條件,熟練掌握是解題的關鍵.12、2【分析】先連接OC,在Rt△ODC中,根據(jù)勾股定理得出OC的長,即可求得答案.【詳解】連接OC,如圖,

∵CD=4,OD=3,,

在Rt△ODC中,

∴,∵,∴.故答案為:.【點睛】此題考查了圓的認識,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.13、240m【分析】根據(jù)比例尺=圖上距離∶實際距離可得實際距離,再進行單位換算.【詳解】設這條公路的實際長度為xcm,則:1:2000=12:x,解得x=24000,24000cm=240m.故答案為240m.【點睛】本題考查圖上距離實際距離與比例尺的關系,解題的關鍵是掌握比例尺=圖上距離∶實際距離.14、6.1【解析】解:設路燈離地面的高度為x米,根據(jù)題意得:,解得:x=6.1.故答案為6.1.15、-1【分析】將x=-1代入一元二次方程,即可求得c的值.【詳解】解:∵x=-1是關于x的一元二次方程的一個根,

∴,∴c=-1,

故答案:-1.【點睛】本題考查了一元二次方程的解的定義,是基礎知識比較簡單.16、5【分析】由矩形的性質可得AB=CD=8,AD=BC=10,∠A=∠D=90°,由折疊的性質可求BF=BC=10,EF=CE,由勾股定理可求AF的長,CE的長.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=8,AD=BC=10,∠A=∠D=90°,∵將△BCE沿BE折疊為△BFE,在Rt△ABF中,AF==6∴DF=AD-AF=4在Rt△DEF中,DF2+DE2=EF2=CE2,∴16+(8-CE)2=CE2,∴CE=5故答案為:5【點睛】本題考查了矩形的性質,折疊的性質,勾股定理,靈活運用這些性質進行推理是本題的關鍵.17、-1【分析】根據(jù)關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數(shù)根;②當△=0時,方程有兩個相等的兩個實數(shù)根;③當△<0時,方程無實數(shù)根.18、6【詳解】解:如圖:圓的半徑是6cm,那么內接正方形的邊長為:AB=CB,因為:AB2+CB2=AC2,所以:AB2+CB2=122即AB2+CB2=144解得AB=cm.故答案為:6.三、解答題(共66分)19、【分析】分別用字母A,B,C代替引導員、聯(lián)絡員和咨詢員崗位,利用列表法求出所有等可能結果,再根據(jù)概率公式求解可得.【詳解】分別用字母A,B,C代替引導員、聯(lián)絡員和咨詢員崗位,用列表法列舉所有可能出現(xiàn)的結果:小西小南ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表中可以看出,所有可能的結果有9種,并且這9種結果出現(xiàn)的可能性相等,所有可能的結果中,小南和小西恰好被分配到同一個崗位的結果有3種,即AA,BB,CC,∴小南和小西恰好被分配到同一個崗位進行志愿服務的概率==.【點睛】考查隨機事件發(fā)生的概率,關鍵是用列表法或樹狀圖表示出所有等可能出現(xiàn)的結果數(shù),用列表法或樹狀圖的前提是必須使每一種情況發(fā)生的可能性是均等的.20、(1)詳見解析;(2)【分析】(1)由AB是⊙O的直徑,可得∠ACB=∠BCD=90°,又由BD是⊙O的切線,根據(jù)同角的余角相等,可得∠A=∠CBD,利用有兩角對應相等的三角形相似,即可證得△ABC∽△BDC;(2)由AC=8,BC=6,可求得△ABC的面積,又由△ABC∽△BDC,根據(jù)相似三角形的面積比等于相似比的平方,即可求得△BDC的面積.【詳解】(1)∵BD是⊙O的切線,∴AB⊥BD,∴∠ABD=90°.∴∠A+∠D=90°.∵AB是⊙O的直徑,∴∠ACB=∠BCD=90°,∴∠CBD+∠D=90°,∴∠A=∠CBD,∴△ABC∽△BDC;(2)∵△ABC∽△BDC,∴,∵AC=8,BC=6,∴S△ABCAC?BC8×6=24,∴S△BDC=S△ABC24÷()2.【點睛】本題考查了相似三角形的判定與性質、圓周角定理、切線的性質以及直角三角形的性質.此題難度適中,注意掌握數(shù)形結合思想的應用.21、米.【分析】先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設拋物線的表達式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點睛】本題考核知識點:二次函數(shù)的應用.解題關鍵點:熟記二次函數(shù)的基本性質.22、(2)2;(2)見解析【分析】(2)將x=2代入方程中即可求出答案.(2)根據(jù)根的判別式即可求出答案.【詳解】(2)將x=2代入原方程可得2﹣(m+2)+2m=2,解得:m=2.(2)由題意可知:△=(m+2)2﹣4×2m=(m﹣2)2≥2,不論m取何實數(shù),該方程總有兩個實數(shù)根.【點睛】本題考查了一元二次方程,解答本題的關鍵是熟練運用根的判別式,本題屬于基礎題型.23、(1)噴出的水流距水平面的最大高度是4米.(2).(3)水池的直徑至少要6米.【分析】(1)利用配方法將一般式轉化為頂點式,即可求出噴出的水流距水平面的最大高度;(2)根據(jù)兩拋物線的關于y軸對稱,即可求出左邊拋物線的二次項系數(shù)和頂點坐標,從而求出左邊拋物線的解析式;(3)先求出右邊拋物線與x軸的交點的橫坐標,利用對稱性即可求出水池的直徑的最小值.【詳解】解:(1)∵,∴拋物線的頂點式為.∴噴出的水流距水平面的最大高度是4米.(2)∵兩拋物線的關于y軸對稱∴左邊拋物線的a=-1,頂點坐標為(-1,4)左邊拋物線的表達式為.(3)將代入,則得,解得,(求拋物線與x軸的右交點,故不合題意,舍去).∵(米)∴水池的直徑至少要6米.【點睛】此題考查的是二次函數(shù)的應用,掌握將二次函數(shù)的一般式轉化為頂點式、利用頂點式求二次函數(shù)的解析式和求拋物線與x軸的交點坐標是解決此題的關鍵.24、x1=1,x2=﹣1【分析】先利用乘法分配律將括號外面的分配到括號里面,再通過移項化成一元二次方程的標準形式,利用提取公因式即可得出結果.【詳解】解:方程移項得:(x+1)﹣x(x+1)=0,分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論