




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中英文對(duì)照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)Effectsoftopographyandsurfaceroughnessinanalysesoflandscapestructure–AproposaltomodifytheexistingsetoflandscapemetricsAbstractTopographyandreliefvariabilityplayakeyroleinecosystemfunctioningandstructuring.However,themostcommonlyusedconcepttorelatepatterntoprocessinlandscapeecology,theso-calledpatch-corridor-matrixmodel,perceivesthelandscapeasaplanimetricsurface.Asaconsequence,landscapemetrics,usedasnumericaldescriptorsofthespatialarrangementoflandscapemosaics,generallydonotallowfortheexaminationofterraincharacteristicsandmayevenproduceerroneousresults,especiallyinmountainousareas.Thisbriefmethodologicalstudyprovidesbasicapproachestoincludereliefpropertiesintolarge-scalelandscapeanalyses,includingthecalculationofstandardlandscapemetricsonthebasisof“true”surfacegeometriesandtheapplicationofroughnessparametersderivedfromsurfacemetrology.Themethodsaretestedfortheirexplanatorypowerusingneutrallandscapesandsimulatedelevationmodels.Theresultsrevealthatareaanddistancemetricspossessahighsensitivitytoterraincomplexity,whilethevaluesofshapemetricschangeonlyslightlywhensurfacegeometriesareconsideredfortheircalculation.Insummary,theproposedmethodsprovetobeavaluableextensionoftheexistingsetofmetricsmainlyin“rough”landscapesections,allowingforamorerealisticassessmentofthespatialstructureKeywords:patch-corridor-matrixmodel,neutrallandscapes,digitalelevationmodels,relief,roughnessparameters1.Introduction–The“3D-issue”inlandscapeecology“3D”hasbecomeafrequently-usedterminmanyfieldsofscience,eveninecology.3D-visualisationand3D-graphicshaveundergoneenormousadvancementsintherecentyears.Realisticvisualisationsoflandscapesorcitiesaregainingimportanceinspatialplanningprocesses,forexamplewhentheimpactofconstructionprojectsistobeclarifiedorwhenthedynamicsoflandscapechangeovertimearetobedemonstrated.Also“3D-GIS”isbeginningtoemerge.However,“3D-analysis”inlandscapeecologyandtheexaminationof“3D-patterns”arestillsomewhatneglected,eventhoughelevationandlandsurfacefeaturescanberegardedaskeyelementsinmanyecologicalprocesses.Thus,fromalandscapeecologicalperspective,thereisaneedfor3D-analysisintermsoftheexaminationandcharacterisationofthetopographyoflandscapesandspecificterrainfeatures.Previouspublicationshavetriedtohighlightthenecessitytoincorporateaspectsofthethirddimensionintolarge-scalelandscapeanalyses.Manyauthorshavepointedoutthattopographyisafactorwhichmayplayakeyroleinecosystemfunctioningandstructuring,andwhichinmanycasesisnotsufficientlytakenintoaccount.Theconnectionbetweensurfacecharacteristicsandboththespeciesrichnessandcompositioninvascularplants(asshowninBurnettetal.1998;Davis&Goetz1990;Sebastiá2004)isawell-knownfactthathasfrequentlybeenusedforthedesignofbiodiversitydistributionmodels(e.g.Bolstadetal.1998).Theimpactofreliefonthedifferentiationofanecosystemasawholeandonparticularecologicalfunctionssuchassoilmoisture,temperaturedistribution,thebalanceofsolarirradiation,ormicroclimatehasbeendescribedindetailaswell(Bailey2004;Oke1978;Swansonetal..Bearingthesewell-studiedlinksbetweenterrainfeaturesandecologicalprocessesinmind,onefactappearstobenoteworthy:Sofar,thewell-establishedpatch-corridor-matrixmodel–assuggestedbyForman(1995)–doesnotexplicitlyconsiderthethirddimensioninitsapproachtodescribethespatialarrangementoflandscapes.Itisgenerallyacceptedthattheacknowledgementofthe“effectofpatternonprocess”(Turner1989)constitutestheself-conceptionofmodernlandscapeecology.Buttheestablisheduseoflandscapemetricsforthecharacterisationofgeometricandspatialpropertiesofcategoricalmappatterns(Mc-Garigal2002)holdsaviewofthelandasa“planimetric”surface–aspectsofthree-dimensionalpatterns(topography,elevation)havenotyetexpandedintothisconcept(seealsoBlaschke&Dr?gu?2003).Alargenumberoflandscapemetricshasbeendescribedindetailandusedforseveralpurposes,includingspatialplanningorecologicalmodelling.Alotofuser-friendlysoftwareproductsforthecomputationofsuchmetricsonthebasisofeithervectororrasterdataareavailable,e.g.FRAGSTATS(McGarigal&Marks1995),LeapII(Schnekenburgeretal.1997)orV-LATE(Lang&Tiede2003).Butinformationabout3D-featureslikesurfaceroughness,landform,orreliefvariabilitywithinlandscapeelements(“patches”)cannotbemadeaccessibleusingthesemeasures.Moreover,onemayevenyielderroneousresultsfromthecalculationoflandscapemetrics,sincethebasicgeometries(area,perimeter)ofpatchesanddistancesbetweenthemaregenerallyunderestimatedinplanimetricobservationsbyneglectingtheunderlyingrelief.Thesediscrepanciesbetweenthepatch-corridor-matrixmodelandtheactualconditionswithinlandscapescanberegardedasamajordrawbackoftheconcept,especiallyinmountainousregionsorinareasexhibitingacomplexterrain.Figure1providesavisualrepresentationoftheeffectsthatreliefmayhaveontheparameteroutputofcommongroupsoflandscapemetrics.Forexample,itisapparentthatforareaordistancemetrics,adefinitetendencytowardshighervaluescanbeexpectedwhensurfacecomplexityistakenintoaccount.Geomorphologyoffersalargesetofparameterstodescribethelandsurfaceandtoclassifythegeorelief(seeDikau&Schmidt1999;Evans1972;Pike2000;Wilson&Gallant2000).However,measuresofcurvature,aspect,slope,orcombinedparameterssuchaswetnessindicesareonlyoflimitedusewhenonetriestocharacterisethespatialpatternoflandscapesusingcategoricalmaps.Thesemeasuresingeneralrelatetocatchmentareasanddiscretelandformelements,ratherthantothe“patches”thatcommonlandscapemetricsareappliedto;acompatibilitybetweentheseapproachescannotbetakenforgrantedineverycase.Figure1:Commonlandscapemetricsgroupsusedinthepatch-corridor-matrixmodelandtheeffectsofunderlyingterrain(upperpartredrawnaccordingtoWiensetal.1993).Othertechniquestoincorporatesurfacefeaturesintolandscapeanalyseshavebeenproposed.Forexample,Beasom(1983)hassuggestedasimplemethodforassessinglandsurfaceruggednessbasedontheintersectionsofsamplepointsandcontourlines.MoreelaborateproposalstoincludetopographiccharacteristicsintoanalysesoflandscapepatternandofvegetationdistributionshavebeenmadebyDorneretal.(2002).Simplemoving-windowalgorithmsforestimationsofthe“concavity/convexity”ofrasterpixelsindigitalelevationmodels(DEM)havebeendevelopedbyMcNab(1992)andBlaszczynski(1997).Whileanapplicationoftheseapproachesforspecialcasestudiesandparticularthematiccontextsmaybeveryvaluable,integrationintothepatch-corridor-matrixmodelhasnotbeenachievedyet.Meanwhile,thetechnologicalprogressinthefieldofremotesensinghasledtoarapidimprovementinthequalityofDEMs.EspeciallyLiDAR(“l(fā)ightdetectionandranging“)measurementsprovidehigh-resolutionelevationdataofthelandsurface.Theycanaccuratelyestimateattributesofvegetationstructureandshouldthereforebeofparticularinteresttolandscapeecologists(Lefskyetal.2002).Firstattemptstoderive3DlandscapemetricsfromLiDARdatahavealreadybeenmadeearlier(e.g.Blaschkeetal.2004).Allthesenotesonthe“3D-issue”inlandscapeecologyandtheshortcomingsintheanalysisofimportantsurfacefeaturesmarkthestartingpointforthestudyathand.Themainpurposeofthispaperistopresentsomebasicprinciplesonhowtosolvetheproblem,basedontherecognitionofthediscretelandunitasacentralconceptinlandscapeecologicalhypotheses(Zonneveld1989).Theterm“3D”isusedinthiscontext,eventhoughdigitalelevationmodelsactuallyrefertoa“2.5D”representationoftherealworld,withonez-valueassociatedwitheachx,y-coordinate.Inmostcases,however,DEMscanbeconsideredassufficienttoprovideanapproximationofthetruesurfaceconditions.Thismethodicallyorientedarticleattemptstorevealandquantifytheeffectsthatthevariabilityandroughnessofthelandsurfacemayhaveontheparametervaluesofcommonlandscapemetricsandtriestopresentafewsuitableworkaroundsforthisissue.Theseincludemodificationalgorithmsforcommonlandscapemetricsaswellastheintroductionofalternativemeasurestocapturesurfaceroughness.Thesemethodsaremainlyexemplifiedusingneutrallandscapemodels.2.Methods–Consideringterraincharacteristicsinthepatch-corridor-matrixmodelTwobasicapproachesforthefirststepstowards3D-analysisoflandscapestructureareproposedinthispaper:Thefirstonecomprisesdifferentcorrectionalgorithmsforstandardarea,shapeanddistancemetrics.Thesecondoneisbasedontheaggregationofheightinformationintheformofsimple“surfaceroughness”parameters.2.1AdjustingstandardlandscapemetricsThesimplestandmostobviousapproachtoincorporatethethirddimensionintolandscapeanalysesistoadjusttheexistingsetofmetricsandtomitigatethesourceoferrorassociatedwiththeplanimetricprojectionofslopes.SuchtechniqueshavebeenproposedearlierbyDorneretal.(2002),whosuggestedtocomputethetruesurfaceareaofeachrastercellinaDEMbythequotientprojectedarea/cos(slope)andtoapproximatethetruedistancesbetweenadjacentcellsbysimpleapplicationofthePythagoreanTheoremusingEuclideandistanceanddifferencesinelevation.However,asystematicintegrationintocalculationalgorithmsoflandscapemetricswasnotpresented.Inthispaper,amoredetailedapproachischosentocalculatetruesurfacearea,basedonthefindingsofJenness(2004).Thetechniqueisbasedonamovingwindowalgorithmandestimatesthetruesurfaceareaforeachgridcellusingatriangulationmethod(Figure2).Eachofthetrianglesislocatedinthree-dimensionalspaceandconnectsthefocalcellwiththecentrepointsofadjacentcells.ThelengthsofthetrianglesidesandtheareaofeachtrianglecaneasilybecalculatedbymeansofthePythagoreanTheorem.Theeightresultingtrianglesaresummeduptoproducethetotalsurfaceareaoftheunderlyingcell.Thismethodispreferredsinceitcanbeexpectedtoprovidemoreaccurateresults;incontrasttotheapproachmentionedabove,alleightneighboursofthepixelofinterestareincludedinthecalculation,insteadofonlytheonedefiningtheslopeangle.Figure2:Methodtodeterminetruesurfaceareaandtruesurfaceperimeterofpatches.Truesurfaceareaofthefocalrastercellisobtainedbyaddingtheeightshadedtriangles,truesurfaceperimeterbysummationoftheeightboldlinesegments(figureredrawnaccordingtoJenness2004).Additionalcomputationstepshavetobeconductedtoobtainthetruesurfaceareanotonlyforeachrasterpixelbutforeachpatchinalandscapeinordertoincludethesenewgeometryvaluesintothecalculationofcommonlandscapemetrics.Arasterfilecontainingthepatchstructureoftheconcerninglandmosaicisoverlaidwiththecorrespondingelevationmodel.Thensurfaceareavaluesofthepixelsrepresentingeachpatcharesummedup.Equalresolutionandextentofthepatchfileandtheelevationmodelarepresumed.Jenness’methodisalsoadaptedinordertocalculaterealisticsurfaceperimetersofeachpatch.Thisisdonebysimplyaddingupthelinesegmentsformingthesurfaceedgeoftherasterpixels(seeboldlinesinFigure2)incasetheyarepartofthepatchboundary.Amoreintricateprocedureisneededforthecalculationofthetruesurfacedistancesbetweenpatchesofthesameclass,thatisthe3D-equivalenttothe“EuclideanNearestNeighbour”measureasusedintheFRAGSTATS-setofmetrics(seeMcGarigaletal.2002).Thequestioncanbereferredtoasaso-called“shortestpathproblem”,forwhichvarioussolutionsaredescribedinliterature,eachofthemhavingitsassetsanddrawbacks(e.g.Cormenetal.2001).Inthepresentcase,aweightedgraphG(V,E)isconstructed,witheachrastercellrepresentingonevertexVandeachconnectionlinebetweenthecellsformingoneedgeEofthegraph.TheweightassociatedtoeveryedgeiscalculatedbyusingthePythagoreanTheoremtoapproximatethe3D-distancebetweencentrepointsofadjacentrastercells.Afterthesesteps,asuitablealgorithmneedstobeappliedtothegraphinordertodeterminetheshortestpathbetweenabordercellofthefocalpatchandtheclosestbordercelloftheclosestpatchofthesameclass.Inthepresentcase,aformoftheDijkstra-algorithmischosen,asitisexpectedtoprovidegoodestimatesfortheshortestpath(Chen2003).Thismethodisbasedonanundirectedcircularsearchprocedure.Consideringtheproblem,thevastcomputationeffortbecomesevident:fora1000x1000DEM,theconstructedgraphconsistsof1*106vertices,aggregatedtoformanumberof“nodes”(definedbythepatchespresent),andapprox.4*106edges.Thisimpliesthatatrade-offbetweencomputationtimeandcalculationresultshastobemade,withtheDijkstra-methodprovidinganacceptablecompromisebetweenthesetwofactors.Onthebasisofthesetruesurfacegeometries,anumberofbasiclandscapemetricscanbecalculatedandbecomparedtotheirplanimetric2D-equivalents.ThesemetricsarelistedinTable1.Table1:Selectedstandardmetrics,calculatedusingboth2D-and3D-geometries.2.2CharacterisingsurfaceroughnessAsoutlinedinthefirstchapter,surfaceroughnessmaybeacriticalissueinassessinganumberofecologicalfunctions,notablyclimaticconditionsorerosionprocesses.Therefore,simpleandstraightforwardmeasurestocaptureroughnesscharacteristicsareneededtohelpimprovetheaccuracyoflandscapeanalyses.Themostself-evidentapproachinthiscontextmaybetosimplycalculatetheratiooftruesurfacearea(asdescribedintheprevioussection)andplanimetricarea.Thismayprovideafirstestimateoftheoveralldeviationofthepatchsurfacefromaperfect2D-plane.Completelyplanepatchesconsequentlyresultinanarearatio-valueof1.Otherconceptsforthecharacterisationofsurfacefeaturessuchasroughnessareprovidedbysurfacemetrology(Stoutetal.1993).Thisscientificfielddealswiththecharacterisationofmanufacturedsurfaces(forexampleopticlenses)onamicroscopicscale.Whenthesemeasuresaretransferredtoalargerscale,theymaybeapplicabletoecologicalproblemsandanalysesoflandscapestructureaswell.Theindex“AverageSurfaceRoughness”(Ra)appearstobethemost-frequentlyusedparameterfromthissetandatthesametimetheonewiththeleastcomputationeffort.Raisusuallycalculatedasthemeanabsolutedepartureofapatch’selevationvaluesfromthemeanplane.Unlikethe3D/2Darearatio,thisindexisnotdimensionlessbutmaintainstheunitsoftheDEM.Therefore,itcanbeconsideredasanabsolutemeasureofsurfaceroughness.AmodificationofRaisRq,the“Root-Mean-SquareDeviationoftheSurface”,whichisastandardisedversionoftheformer.Theseandothermeasuresforthecharacterisationofthelandsurfaceusingsurfacemetrology-indicesaregiveninTable2,eventhoughnotallofthemareexplicitlycoveredindetailinthisstudy.RaandRqwerechosenforthisstudysincetheyarewidely-usedindisciplineslikematerialsscienceandarerathereasilyinterpretable.TheimplementationofthemethodsdescribedwascarriedoutusingboththeMATLABpackage(Math-Works2005)andanArcGIS-extensionprogrammedinC#usingthe.NET-environmentandtheArcObjectsclasslibraries(ESRI2005).2.3CasestudyusingneutrallandscapemodelsAtthispoint,acoupleofquestionsmayarise:Isitactuallynecessarytoincludeelevationandtopographyrespectivelyintoanalysesoflandscapestructure?Isthereanysignificantdifferenceatallbetweenthe2D-and3D-formsoflandscapemetrics?Dosimpleroughnessparameterstellusanythingaboutthereliefvariability?And,whichmayevenbethemostimportantone:istheadditionalcomputationeffortworthbeingcarriedout?Inordertohelpansweringthesequestionsandtomakevalidstatementsabouttherelevance,sensitivityandexplanatorypoweroftheproposedmethods,theabovementionedindiceswereappliedtoasetofneutrallandscapemodelsandsimulatedDEMs.Neutrallandscapemodelshaveprovedtobeavaluablemeansfortherepresentationofrealisticconditionsorforthereflectionofextremestatesoflandscapesystems(Gardner&Urban2007;Gardneretal.1987;Lietal.2004).Thisturnedouttobeuseful,asneutrallandscapesallowtomirrorlandscapesectionsofdifferentstructuring,whereassimulatedelevationmodelsmayreflectvariableheterogeneityoftheunderlyingterrain.Inthegivencase,thesoftwareSimmap(Saura&Martínez-Millán2000)wasusedtocreatelandscapeswithanextentof1000x1000rastercells(withanassignedhorizontalresolutionof1x1m)andthreelanduseclassesofequalsurfacepercentages.Theinitialprobabilitypwasalteredtoproducetwodifferenttypesoflandscapestructuring.Similarly,theprogrammeLandserf(Wood2005)wasappliedtoproduceelevationmodelsofvariousreliefvariabilities.Moreprecisely,theparameter“fractaldimension”(FD)wasalteredtoyieldthreeDEMsofincreasing“roughness”.DetailsaboutthetestlandscapesandtheDEMscanbederivedfromFigure3.Table2:Examplesofsomesimpleindicestoderiveinformationaboutsurfacecharacteristicsandtheircalculationformulae(PrecisionDevices1998).Figure3:CombinationsofneutrallandscapemodelsandsimulatedDEMs.3.Results–TheeffectoftopographyonselectedlandscapemetricsThesixlandmosaic/elevationmodel-combinationsweresubjectto3D-landscapeanalysisaccordingtotheoutlinedtechniques.Thearithmeticmeanoftheindexvalueswascalculatedforallthepatchespresentinthelandscapesinordertoillustratetheeffectoftheunderlyingreliefintheexaminedsituations(planimetricconditionsaswellasDEMswithfractaldimension2.1,2.5and2.9respectively).TheresultsaredisplayedinthediagramsinFigure4.Somefundamentalfindingscanbenoted.Forthemeanpatchareaandmeanpatchperimeter,thereisacleartrendtowardshighervaluesforincreasingreliefvariability.Thisholdstrueforboththehighlyfragmentedlandscape(p=0.54)aswellasforthemosaicdominatedbyfewerandlargerpatches(p=0.58).ThedifferencesbetweentheplanimetriccaseandeachofthethreesimulatedDEMsprovetobesignificantwhencomparedusingat-testforpairedsamples.Asexpected,acleardependenceofthevaluesontheterrainvariabilityandtheabilityoftheappliedmethodstocapturethiseffectcanbedemonstrated.Forthedistancemeasure“NearestNeighbour”,asimilareffectisevident.Thereisaclearincreaseforthemeandistancebetweennearestneighboursofthesameclasswhenthereliefisbecoming“rougher”andmorevariable.Forthegroupoftheshapemetrics,thefindingsarenotasclearandnotaseasilyinterpretable.FortheFractalDimension(FRAC),thedifferencesbetweenthe2D-versionandits3D-equivalentappliedtothethreeDEMsareratherlowandalmostneglectable,whilestillslightlyincreasingwithterrainroughness.Perimeter-AreaRatio(PARA)showsitstypicalsize-dependency(McGarigaletal.2002),andthereforethisindexhastobecarefullyinterpretedduetothegrowingmeanpatchsizewithincreasingterrainroughness.Thus,adefinitestatementabouttheeffectsofterrainontheoutputofthisparametercanhardlybemade.Allinall,thisparameterappearstobelargelyindependentofterrainroughness.AstheShapeIndex(SHAPE)correctsforthesizeproblemofthePerimeter-AreaRatioindex,itmaybethemostinterestingonetohaveacloserlookatwithinthegroupoftheshapemetrics.ThedifferencesofthemeanShapeIndexforthefourreliefsituationsexaminedseemtoberathersmallforthe2D-caseandthefirsttwoelevationmodelswithanabruptriseforthemostvariableelevationmodel.Thisagainisthecaseforbothofthelandscapemosaicsconsidered.Ofcourse,thisriseisuptoacertainextentproportionaltotheincreaseinmeanpatcharea(seeabove),asSHAPEtendstoincreasewithgrowingarea,evenifperimeterincreasesforthesamefactoratthesametime.ThiscanbederivedfromthecalculationformulaforSHAPE.Finally,thetwosimpleroughnessparameterscalculated,AverageSurfaceRoughness(Ra)andRoot-Mean-SquareDeviationoftheSurface(Rq),wereappliedtohetestlandscapes.Theresultsindicateacleardependencyoftheparameteroutputsontheunderlyingreliefwithaverysimilarbehaviourofthetwoindicesandsimilaroutputsforthetwodifferentlandscapemosaics.4.Discussion–OntherelevanceoftheproposedmethodsThisshortmethodologicalexaminationissupposedtoclarifytheeffectoftopographyandsurfaceroughnessonafewcommonlandscapemetrics.Moreover,somebothsimpleandfundamentalapproachestoconsidertheseeffectsarepresented.Patchareaandperimeterexhibitastrongconnectednesstothevariabilityoftheunderlyingterrain.Theeffectsmaynotbeasdistinctunderreal-worldconditions.ButthesimulatedlandscapemodelsandDEMsclearlydemonstratethataconsiderationoflandscapemosaicsaspurelyplanimetricsurfacesandtheircharacterisationusing2D-landscapemetricsmaynotbesufficientineverycase,especiallywhenterrainishighlyvariable.Whenonetriestocharacteriselandscapesinthesecases,theapplicationofcorrectedmetricsasproposedinthispapermaybeadvisable.Thesameholdstruefordistancemeasures.Thesemetricsmayhaveacriticalrelevancee.g.inspecies-centredhabitatanalyses.Ascanbeseenfromtheresultspresentedhere,theeffectofthereliefonthe“true”surfacedistancesbetweenpatchesshouldnotbeneglectedinroughterrain.Thiseffectmaybeexaggeratedbytheapplicationofthesimulatedlandscapes,evenifthepurposeistorevealthefundamentalrelationshipbetweendistanceandtopographyandtoprovideatechniquetoimprovethecalculationofsuchdistancemeasures.StatementsregardingshapeindiceslikePARA,FRACorSHAPEarenotasconcise.Thesemetricsdoreacttotheterrain,butabsolutedifferencesbetweentheexaminedreliefsituationstendtobelowandthetrendisnotasobviousforallofthesemeasuresasisthecaseforarea,perimeteranddistancemeasures.Onereasonforthismaybethesimplefactthatinthecalculationalgorithmsforthesemetrics,parametersofthepatchgeometriesappearbothaboveandbelowthefractionline.Therefore,whendividingforexample3D-perimeterby3D-area(bothhavinglargervaluescomparedtotheir2D-equivalents),thedifferencesbetweenthe2Dandthe3D-approachmaysimplylevelouttoacertainextent.Finally,theresultsrevealthattheanalysisofsurfaceroughnessmayserveasavaluableinstrumenttoprovidehighlycondensedinformationaboutthetopographiccharacteristicsofpatches.AsbothRaandRqarecloselyconnectedtotheinitialroughnessparameteroftherespectiveDEMs(i.e.theirfractaldimensionFD),theycanberegardedasagoodextensionofcommonlandscapemetricstowardsthethirdspatialdimension,especiallyastheircalculationalgorithmsareratherstraight-forwardandcanbeeasilyintegratedintothepatch-corridor-matrixmodeloflandscapes.Moreover,theresultsfromtheseparametersareeasilyinterpretable.Toassesstheinfluenceoflandscapeconfigurationandpatchstructuringonthemetricsoutput,thetwochosenmosaicswithaninitialprobabilitypweresupposedtoserveasarepresentationofdifferentstructuralconditions.Itturnsoutthatthegeneraltrendsinindexbehaviourforincreasingfractaldimensionoftheunderlyingreliefaregenerallythesame.Thedistancetothenearestneighbourinthesameclasstendstobelargerforp=0.58,becauseonaveragelargerpatchesofotherclasseshavetobecrossed.Thisindicatesthattheapplicationofthecorrectionalgorithmfordistancecalculationsmaybeparticularlyvaluableincoarse-grainedlandscapeswithlargereliefvariability.Asidefromthesefindings,preliminarystudiescarriedoutapplyingtheproposedmethodstoreal-worlddatahaveshownthatlargepatchesingeneralleadtosomemitigationofterraineffectsonlandscapemetrics,asoftenlandscapeelementscompriseboth“flat”and“rough”areas.Thiscircumstanceisnotreflectedtothesamedegreebytherelativelyhomogeneoussimulatedelevationmodelsusedinthisstudy,wherethequantificationofterrainroughnessratherthangenerallandscapeconfigurationwasthemainfocus.Theresultssuggestthattheproposedmethodsmayexhibitalargepotentialformanyecologicalproblems.Sinceespeciallymeasuresforhabitatareaandhabitatisolationorfragmentationarekeyvariablesinmanyspecies-centredanalyses,theusageofcorrectionalgorithmsforthesegeometriesappearstoofferthepossibilityofimprovedresults(forexamplesdealingwiththesemeasuresseeBennett2003;Fahrig1997;Kraussetal.2005;vanDorp&Opdam1987).Figure4:Diagramsdisplayingthearithmeticmeansand95%-confidenceintervalsaroundthemeanvaluefortheselectedindices;eachindexwascalculatedforthetwotestlandscapes(displayedinblueandgreenrespectively)combinedwitheachofthethreeelevationmodelsaswellastheplanimetriccase.5.ConclusionsandoutlookThefindingspresentedinthispaperindicatethatthepatch-corridor-matrixmodelastheprevailingconcepttoperceiveanddescribelandscapesmaynotsufficeincaseswheretopographicandmorphologicfeaturesofthelandsurfaceneedtobetakenintoaccount.Astopographyplaysacrucialroleinmanyecologicalprocesses,simplemethodsandtechniquesforitsassessmentareneeded.Weproposesomestraightforwardapproachesthatenablelandscapeecologiststoaccountfortheeffectsofreliefandlandformintheiranalyses.Thesuggestedframeworkfortheadjustmentofstandardlandscapemetrics,thusconvertingthemto3D-metrics,maybeappliedt
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 日常部門管理
- 胸部手術(shù)后的健康教育
- 2025中山市東鳳鎮(zhèn)社區(qū)工作者考試真題
- 2025唐山市玉田縣窩洛沽鎮(zhèn)社區(qū)工作者考試真題
- 幼兒園教育小朋友穿內(nèi)褲的重要性與方法
- 傳染病護(hù)理新進(jìn)展研討班
- 陽(yáng)光心理 健康人生-理想心理健康教育主題班會(huì)
- 篇四:2018年幼兒園圣誕節(jié)活動(dòng)方案
- 葡萄水墨畫技法教程
- 服裝設(shè)計(jì)工作總結(jié)與展望
- 學(xué)齡兒童體重管理營(yíng)養(yǎng)指導(dǎo)規(guī)范課件
- 客戶維護(hù)合同協(xié)議
- 2025陜西建筑安全員C證(專職安全員)考試題庫(kù)
- 消毒供應(yīng)中心規(guī)范培訓(xùn)
- 2025重慶華地資環(huán)科技有限公司校園招聘9人筆試參考題庫(kù)附帶答案詳解
- 易制毒化學(xué)品銷售人員崗位職責(zé)
- 小區(qū)二次供水水箱清洗消毒的監(jiān)督流程課件
- 自主智能系統(tǒng)知到課后答案智慧樹章節(jié)測(cè)試答案2025年春哈爾濱工程大學(xué)
- GB/T 6433-2025飼料中粗脂肪的測(cè)定
- 2019版 浙科版 高中生物學(xué) 必修2 遺傳與進(jìn)化《第二章 染色體與遺傳》大單元整體教學(xué)設(shè)計(jì)2020課標(biāo)
- 【MOOC期末】《介入放射學(xué)》(東南大學(xué))中國(guó)大學(xué)慕課答案
評(píng)論
0/150
提交評(píng)論