




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第三章冪級數(shù)展開3.2冪級數(shù)3.3泰勒級數(shù)展開3.4§3.1復(fù)數(shù)項級數(shù)3.5洛朗級數(shù)展開3.6孤立奇點的分類數(shù)學(xué)物理方法第3和4章稱級數(shù)復(fù)數(shù)項級數(shù)和前n
項和若有限收斂于F這時也收斂§3.1復(fù)數(shù)項級數(shù)1、復(fù)數(shù)項級數(shù)數(shù)學(xué)物理方法第3和4章科西收斂判據(jù):(級數(shù)收斂必要條件)對于任意
>0,有N,使得n>N時p為任意正整數(shù)絕對收斂:收斂2、復(fù)變函數(shù)項級數(shù)各項都是z
的函數(shù)對于B(或l
上)任意z,給定
>0,總有N(z),使得n>N(z)時稱為級數(shù)在B上一致收斂此時,若每項連續(xù),則和連續(xù)數(shù)學(xué)物理方法第3和4章令:1、比值判別法3.2冪級數(shù)討論冪級數(shù)為以z0
為中心的冪級數(shù)考慮絕對收斂發(fā)散絕對收斂數(shù)學(xué)物理方法第3和4章2、根值判別法發(fā)散絕對收斂發(fā)散絕對收斂發(fā)散數(shù)學(xué)物理方法第3和4章3、收斂圓與收斂半徑的收斂半徑例:求冪級數(shù)以z0為圓心半徑為R的圓內(nèi)級數(shù)絕對收斂,這個圓稱為收斂圓。R為收斂半徑事實上:解:收斂圓:以0為圓心半徑為1如數(shù)學(xué)物理方法第3和4章的收斂半徑例:求冪級數(shù)公比為解:收斂圓:以0為圓心半徑為1如的收斂半徑例:求冪級數(shù)解:數(shù)學(xué)物理方法第3和4章定理:設(shè)f(z)在以z0為圓心的圓CR內(nèi)解析,則對圓內(nèi)的任意z點,f(z)可展開為其中:3.3泰勒級數(shù)展開CR1為圓CR內(nèi)包含z且與CR同心的圓CR1CR數(shù)學(xué)物理方法第3和4章證:cauch公式CRCR1數(shù)學(xué)物理方法第3和4章而由cauch公式數(shù)學(xué)物理方法第3和4章展開例:在z0=0鄰域上把公比為解:數(shù)學(xué)物理方法第3和4章展開例:在z0=0鄰域上把解:和數(shù)學(xué)物理方法第3和4章展開例:在z0=0鄰域上把解:展開例:在z0=0鄰域上把數(shù)學(xué)物理方法第3和4章展開例:在z0=1鄰域上把解:數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章3.4解析沿拓比較兩個函數(shù):除z=1以外設(shè)某個區(qū)域b上的解析函數(shù)f(z),找出另一函數(shù)F(z),它在含有b
的一個較大的區(qū)域B上解析,且在區(qū)域b上等于f(z)和兩者在較小區(qū)域等同bB稱F(z)為
f(z)的解析沿拓1、解析沿拓概念數(shù)學(xué)物理方法第3和4章設(shè)f(z),F(xiàn)(z)在某個區(qū)域B上解析,若在B的任一子區(qū)域b中f(z)
F(z),則在整個區(qū)域B上必有f(z)
F(z)。2、解析沿拓唯一性概念數(shù)學(xué)物理方法第3和4章3.5洛朗級數(shù)展開考慮如下冪級數(shù)正冪部分收斂半徑為R1負(fù)冪部分,記
=1/(z-z0),級數(shù)的收斂圓半徑為1/R2=
即在
z-z0=
R2圓外收斂圓數(shù)學(xué)物理方法第3和4章在圓環(huán)R2<
z-z0<
R1內(nèi)絕對一致收斂圓定理:設(shè)f(z)在圓環(huán)R2<
z-z0<
R1內(nèi)單值解析,則對圓環(huán)內(nèi)的任意z點,f(z)可展開為其中:C為圓環(huán)內(nèi)按逆時針方向饒內(nèi)圓一周的任意閉合曲線數(shù)學(xué)物理方法第3和4章證:由復(fù)通區(qū)域cauch公式對于C‘R2而數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章令k=-(l+1)
l=-(k+1)數(shù)學(xué)物理方法第3和4章由復(fù)通區(qū)域cauch定理數(shù)學(xué)物理方法第3和4章上述洛朗級數(shù)展開唯一其中:或?qū)憺閿?shù)學(xué)物理方法第3和4章展開例:在z0=0鄰域上把解:數(shù)學(xué)物理方法第3和4章展開為洛朗級數(shù)例:在上把解:數(shù)學(xué)物理方法第3和4章展開為洛朗級數(shù)例:在上把解:只有一個奇點-1在z0=1的鄰域可展開為泰勒級數(shù)數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章展開為洛朗級數(shù)例:在上把解:有兩個奇點z=1,z=2在z0=0的鄰域可在以下三個區(qū)域進(jìn)行洛朗級數(shù)展開(1)數(shù)學(xué)物理方法第3和4章(2)數(shù)學(xué)物理方法第3和4章(3)數(shù)學(xué)物理方法第3和4章展開為洛朗級數(shù)例:在上把解:上兩項乘積中,令l=m+n,有正冪部分zm為數(shù)學(xué)物理方法第3和4章與的負(fù)冪部分z-h(h>0),可令n=l+h數(shù)學(xué)物理方法第3和4章令-h=m,n=l數(shù)學(xué)物理方法第3和4章Jm為m階貝塞爾函數(shù)
數(shù)學(xué)物理方法第3和4章3.6孤立奇點的分類f(z)在某點z0
不可導(dǎo),而在z0的任意小鄰域內(nèi)處處可導(dǎo),稱z0為f(z)的孤立奇點f(z)正冪部分稱為解析部分,負(fù)冪部分稱為主要部分(z-z0)-1的系數(shù)a-1稱為f(z)在
奇點z0的留數(shù)若稱z0為f(z)的可去奇點數(shù)學(xué)物理方法第3和4章若稱z0為f(z)的本性奇點m為z0的階,一階極點簡稱為單極點數(shù)學(xué)物理方法第3和4章第四章留數(shù)定理4.2利用留數(shù)定理計算實變函數(shù)定積分§4.1留數(shù)定理數(shù)學(xué)物理方法第3和4章§4.1留數(shù)定理若l所圍區(qū)域解析,則考慮積分若l所圍區(qū)域包圍一個奇點z0
,展開f(z),則數(shù)學(xué)物理方法第3和4章由(l不包圍
)(l包圍
)a-1稱為f(z)在
奇點z0的留數(shù)數(shù)學(xué)物理方法第3和4章若l所圍區(qū)域包圍n個奇點b1
b2
b3….,bn,則稱為留數(shù)定理如何求a-1?若z0為單極點數(shù)學(xué)物理方法第3和4章若數(shù)學(xué)物理方法第3和4章若z0為f(z)的m階極點m階極點單極點留數(shù)定理數(shù)學(xué)物理方法第3和4章求Resf(0)例:解:數(shù)學(xué)物理方法第3和4章求Resf(1)例:解:數(shù)學(xué)物理方法第3和4章的極點,求留數(shù)例:確定函數(shù)解:數(shù)學(xué)物理方法第3和4章例:計算回路積分解:被積函數(shù)的奇點為單位圓
z=1內(nèi)的奇點為數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章4.2利用留數(shù)定理計算實變函數(shù)定積分(1)、無窮積分若f(z)在實軸上無奇點,在上半平面除有限個孤立奇點bk(k=1,2,…,n)外處處解析;在包括實軸在內(nèi)的上半平面中,當(dāng)
z
無窮時,zf(z)一致趨于零,則o-RRCR則至少高于兩階數(shù)學(xué)物理方法第3和4章證明:o-RRCR數(shù)學(xué)物理方法第3和4章例:計算積分解:上半平面奇點為z0=i數(shù)學(xué)物理方法第3和4章例:計算積分解:被積函數(shù)的奇點為上半平面為n階極點z0=in為整數(shù)數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章(2)、三角函數(shù)有理積分積分若R(cos,sin)為
cos,sin
的有理函數(shù),且在[0,2]上連續(xù),則其中表示f(z)在單位圓內(nèi)所有奇點的留數(shù)和數(shù)學(xué)物理方法第3和4章證明:數(shù)學(xué)物理方法第3和4章例:計算積分解:令有兩個一階極點(a<1)z1在圓內(nèi)數(shù)學(xué)物理方法第3和4章例:計算積分解:令(a>1)有兩個一階極點數(shù)學(xué)物理方法第3和4章為單極點,在圓內(nèi)數(shù)學(xué)物理方法第3和4章例:計算積分解:令(a>1)有一個奇點z=0,為2n+1階極點數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章數(shù)學(xué)物理方法第3和4章(3)、含三角函數(shù)的無窮積分其中F(z)為偶數(shù),G(x)為奇數(shù)若f(z)在實軸上無奇點,在上半平面除有限個孤立奇點bk(k=1,2,…,n)外處處解析;在包括實軸在內(nèi)的上半平面中,當(dāng)
z
無窮時,f(z)一致趨于零,且m>0則數(shù)學(xué)物理方法第3和4章證明:o-RRCR數(shù)學(xué)物理方法第3和4章o-RRCR
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年云南省科技廳下屬事業(yè)單位真題
- 新型通信系統(tǒng)設(shè)計考試題目及答案
- 公益組織會計的工作計劃
- 2024年延安市人民醫(yī)院招聘筆試真題
- 2024年湖南省科學(xué)技術(shù)廳下屬事業(yè)單位真題
- 2024年湖北省鄉(xiāng)村振興局下屬事業(yè)單位真題
- 成功的蜂巢軟件設(shè)計師考試的試題及答案
- 如何提升品牌員工的認(rèn)同感計劃
- 2024年南寧上林縣三里鎮(zhèn)招聘筆試真題
- 2024年馬鞍山經(jīng)開區(qū)城管局招聘筆試真題
- 帶電粒子在復(fù)合場中的運動教學(xué)設(shè)計
- 貴州省婦幼健康服務(wù)體系與能力提升實施方案
- 運維經(jīng)理培訓(xùn)
- 事業(yè)單位停薪留職協(xié)議
- 2025年1月浙江省普通高校招生選考化學(xué)化學(xué)試題(解析版)
- 主播語音與發(fā)聲知到課后答案智慧樹章節(jié)測試答案2025年春上海電影藝術(shù)職業(yè)學(xué)院
- 貴州2025年02月貴州省衛(wèi)生健康委員會部分直屬事業(yè)單位公開招考141名工作人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 《干細(xì)胞療法簡介》課件
- 《基于PLC的立式車床控制系統(tǒng)設(shè)計》13000字(論文)
- 出口海運操作流程
- 2025年春季學(xué)期1530學(xué)生安全教育記錄表
評論
0/150
提交評論