




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省灤縣第二中學(xué)2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,正方體的棱長為2,以其所有面的中心為頂點(diǎn)的多面體的表面積為()A. B.C.8 D.122.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.3.某學(xué)校要從5名男教師和3名女教師中隨機(jī)選出3人去支教,則抽取的3人中,女教師最多為1人的選法種數(shù)為()A.10 B.30C.40 D.464.已知長方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.5.如圖,在棱長為1的正方體中,點(diǎn)B到直線的距離為()A. B.C. D.6.已知拋物線的焦點(diǎn)是雙曲線的一個焦點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.7.已知直線過點(diǎn)且與直線平行,則直線方程為()A. B.C. D.8.某種心臟手術(shù)成功率為0.9,現(xiàn)采用隨機(jī)模擬方法估計“3例心臟手術(shù)全部成功”的概率.先利用計算器或計算機(jī)產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),由于成功率是0.9,故我們用0表示手術(shù)不成功,1,2,3,4,5,6,7,8,9表示手術(shù)成功,再以每3個隨機(jī)數(shù)為一組,作為3例手術(shù)的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生如下10組隨機(jī)數(shù):812,832,569,683,271,989,730,537,925,907,由此估計“3例心臟手術(shù)全部成功”的概率為()A.0.9 B.0.8C.0.7 D.0.69.已知點(diǎn),則直線的傾斜角為()A. B.C. D.10.美學(xué)四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.11.方程表示的圖形是A.兩個半圓 B.兩個圓C.圓 D.半圓12.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣1二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓的焦點(diǎn)在軸上,過點(diǎn)作圓的切線,切點(diǎn)分別為,,直線恰好經(jīng)過橢圓的上焦點(diǎn)和右頂點(diǎn),則橢圓的方程是________________14.已知函數(shù),,若,,使得,則實(shí)數(shù)a的取值范圍是______15.如圖,棱長為2的正方體中,E,F(xiàn)分別為棱、的中點(diǎn),G為面對角線上一個動點(diǎn),則三棱錐的外接球表面積的最小值為___________.16.已知函數(shù)滿足:①是奇函數(shù);②當(dāng)時,.寫出一個滿足條件的函數(shù)________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,圓.(1)若l與圓C相切,求切點(diǎn)坐標(biāo);(2)若l與圓C交于A,B,且,求的面積.18.(12分)已知,是函數(shù)的兩個極值點(diǎn).(1)求的解析式;(2)記,,若函數(shù)有三個零點(diǎn),求的取值范圍.19.(12分)已知三棱柱中,面底面,,底面是邊長為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點(diǎn),使得和面所成角的余弦值為,并說明理由.20.(12分)如圖,在正四棱柱中,是上的點(diǎn),滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.21.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)的直線l與橢圓E交于A,B兩點(diǎn),判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.22.(10分)已知向量,,且.(1)求滿足上述條件的點(diǎn)M(x,y)的軌跡C的方程;(2)設(shè)曲線C與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)P,Q,點(diǎn)A(0,1),當(dāng)|AP|=|AQ|時,求實(shí)數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】首先確定幾何體的空間結(jié)構(gòu)特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個由8個全等的正三角形圍成的多面體,正三角形的邊長為:,正三角形邊上的一條高為:,所以一個正三角形的面積為:,所以多面體的表面積為:.故選:B2、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設(shè)三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點(diǎn)睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應(yīng)用問題,屬于中檔題3、C【解析】可分為女教師0人,男教師3人和女教師1人,男教師2人兩種情況,用組合數(shù)表示計算即得解【詳解】女教師最多為1人即女教師為0人或者1人若女教師為0人,則男教師有3人,有種選擇;若女教師為1人,則男教師2人,有種選擇;故女教師最多為1人的選法種數(shù)為種故選:C4、A【解析】建立空間直角坐標(biāo)系,求得平面的一個法向量為,易知平面的一個法向量為,由求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個法向量為,則,即,令,則,易知平面的一個法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A5、A【解析】以為坐標(biāo)原點(diǎn),以為單位正交基底,建立空間直角坐標(biāo)系,取,,利用向量法,根據(jù)公式即可求出答案.【詳解】以為坐標(biāo)原點(diǎn),以為單位正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,取,,則,,則點(diǎn)B到直線AC1的距離為.故選:A6、B【解析】根據(jù)拋物線和寫出焦點(diǎn)坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點(diǎn)為,雙曲線的,,所以,所以雙曲線的右焦點(diǎn)為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.7、C【解析】由題意,直線的斜率為,利用點(diǎn)斜式即可得答案.【詳解】解:因?yàn)橹本€與直線平行,所以直線的斜率為,又直線過點(diǎn),所以直線的方程為,即,故選:C.8、B【解析】由題可知10組隨機(jī)數(shù)中表示“3例心臟手術(shù)全部成功”的有8組,即求.【詳解】由題意,10組隨機(jī)數(shù):812,832,569,683,271,989,730,537,925,907,表示“3例心臟手術(shù)全部成功”的有:812,832,569,683,271,989,537,925,故8個,故估計“3例心臟手術(shù)全部成功”的概率為.故選:B.9、A【解析】由兩點(diǎn)坐標(biāo),求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【詳解】設(shè)直線AB的傾斜角為,因?yàn)?,所以直線AB的斜率,即,因?yàn)?,所?故選:A10、A【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故選:A【點(diǎn)睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎(chǔ)題.11、D【解析】其中,再兩邊同時平方,由此確定圖形【詳解】根據(jù)題意,,再兩邊同時平方,由此確定圖形為半圓.故選:D【點(diǎn)睛】幾何圖像中要注意與方程式是一一對應(yīng),故方程的中未知數(shù)的的取值范圍對應(yīng)到圖形中的坐標(biāo)的取值范圍12、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時取最小值故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)過點(diǎn)的圓的切線為,分類討論求得直線分別與圓的切線,求得直線的方程,從而得到直線與軸、軸的交點(diǎn)坐標(biāo),得到橢圓的右焦點(diǎn)和上頂點(diǎn),進(jìn)而求得橢圓的方程.【詳解】設(shè)過點(diǎn)的圓的切線分別為,即,當(dāng)直線與軸垂直時,不存在,直線方程為,恰好與圓相切于點(diǎn);當(dāng)直線與軸不垂直時,原點(diǎn)到直線的距離為,解得,此時直線的方程為,此時直線與圓相切于點(diǎn),因此,直線的斜率為,直線的方程為,所以直線交軸交于點(diǎn),交于軸于點(diǎn),橢圓的右焦點(diǎn)為,上頂點(diǎn)為,所以,可得,所以橢圓的標(biāo)準(zhǔn)方程為.故答案為:.14、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當(dāng)時,,所以在上單調(diào)遞減,所以,即,由,得,當(dāng)時,,所以在上單調(diào)遞增,所以,即,因?yàn)?,,使得,所以,解得,故答案為?5、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設(shè),球心,得到外接球半徑關(guān)于的函數(shù)關(guān)系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設(shè),球心,,又.聯(lián)立以上兩式,得,所以時,,為最小值,外接球表面積最小值為.故答案為:.16、(答案不唯一)【解析】利用函數(shù)的奇偶性及其單調(diào)性寫出函數(shù)解析式即可.【詳解】結(jié)合冪函數(shù)的性質(zhì)可知是奇函數(shù),當(dāng)時,,則符合上述兩個條件,故答案為:(答案不唯一).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出直線的定點(diǎn),再由定點(diǎn)在圓上得出切點(diǎn)坐標(biāo);(2)由(1)知,證明為直角三角形,求出,,最后由三角形的面積公式求出的面積.【詳解】(1)圓可化為直線可化為,由解得即直線過定點(diǎn),由于,則點(diǎn)在圓上因?yàn)閘與圓C相切,所以切點(diǎn)坐標(biāo)為(2)因?yàn)閘與圓C交于A,B,所以點(diǎn)如下圖所示,與相交于點(diǎn),由以及圓的對稱性可知,點(diǎn)為的中點(diǎn),且由,則直線的方程為圓心到直線的距離為,即直線與圓相切即,則因?yàn)?,所以【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在第一問中,關(guān)鍵是先確定直線過定點(diǎn),再由定點(diǎn)在圓上,從而確定切點(diǎn)的坐標(biāo).18、(1);(2)【解析】(1)根據(jù)極值點(diǎn)的定義,可知方程的兩個解即為,,代入即得結(jié)果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個交點(diǎn),進(jìn)而求解的取值范圍【詳解】解:(1)因?yàn)椋愿鶕?jù)極值點(diǎn)定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個實(shí)數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個交點(diǎn),又因?yàn)椋瑒t令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因?yàn)椋?,,函?shù)圖象如下所示:若使函數(shù)與直線有三個交點(diǎn),則需使,即19、(1)證明見解析;(2)為的中點(diǎn),理由見解析.【解析】(1)取的中點(diǎn),連接,利用面面垂直的性質(zhì)定理可得出平面,可得出,再由,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè)點(diǎn),利用空間向量法可得出關(guān)于實(shí)數(shù)的方程,求出的值,即可得出結(jié)論.【詳解】(1)取的中點(diǎn),連接,如圖:因?yàn)槿切问堑冗吶切危?,又因?yàn)槊娴酌?,平面平面,面,所以平面,又面,所以,又,,平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、,在上找一點(diǎn),其中,,,,設(shè)面的一個法向量,則,不妨令,則,和面所成角的余弦值為,則,解得或(舍),所以,為的中點(diǎn),符合題意.20、(1)證明見解析(2)【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)以,,為軸的正方向建立空間直角坐標(biāo)系,求平面,平面的法向量,求法向量的夾角,根據(jù)二面角的余弦值與法向量的夾角的余弦的關(guān)系確定二面角的余弦值.【小問1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點(diǎn).連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標(biāo)系,則,.設(shè)面的法向量為,同理可得面的法向量,∴二面角的余弦值為21、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當(dāng)直線l的斜率存在時,設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達(dá)定理、向量數(shù)量積運(yùn)算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標(biāo)準(zhǔn)方程為:.【小問2詳解】當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時,當(dāng)直線l的斜率不存在時,由對稱性不妨令,,,當(dāng)時,,即當(dāng)時,過點(diǎn)的任意直線l與橢圓E交于A,B兩點(diǎn),恒有,所以存在滿足條件.【點(diǎn)睛】方法點(diǎn)睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值22、(1)+y2=1;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 風(fēng)險管理在公司戰(zhàn)略執(zhí)行中的約束與支持性試題及答案
- 風(fēng)險戰(zhàn)略規(guī)劃與實(shí)施試題及答案
- 構(gòu)建誠信企業(yè)的年度工作措施計劃
- 促進(jìn)倉庫文化建設(shè)與傳播計劃
- 科技創(chuàng)新與創(chuàng)業(yè)的結(jié)合實(shí)踐試題及答案
- 智能化在生產(chǎn)工作計劃中的實(shí)踐
- 網(wǎng)絡(luò)安全事件響應(yīng)流程試題及答案
- 2024年四川傳媒學(xué)院輔導(dǎo)員考試真題
- 中小企業(yè)品牌發(fā)展的挑戰(zhàn)與機(jī)遇計劃
- 2024年河北省林業(yè)和草原局下屬事業(yè)單位真題
- 2025-2030年芳綸纖維行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資研究報告
- 船舶股份合伙協(xié)議書
- 《傳染病學(xué):新冠病毒》課件
- 圖形的位置(課件)-數(shù)學(xué)人教版六年級下冊
- 虛擬地理環(huán)境智慧樹知到答案2024年黑龍江工程學(xué)院
- MOOC 現(xiàn)代郵政英語(English for Modern Postal Service)-南京郵電大學(xué) 中國大學(xué)慕課答案
- DB37-T 5026-2022《居住建筑節(jié)能設(shè)計標(biāo)準(zhǔn)》
- 中醫(yī)醫(yī)院科主任科室管理通用考核表
- 《2021國標(biāo)暖通圖集資料》96K150-3 圓錐形風(fēng)帽
- 第四節(jié)中間輸送裝置
- Como170中文說明書
評論
0/150
提交評論