2024屆上海市曹楊第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
2024屆上海市曹楊第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
2024屆上海市曹楊第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
2024屆上海市曹楊第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
2024屆上海市曹楊第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆上海市曹楊第二中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線=的焦點(diǎn)為F,M、N是拋物線上兩個(gè)不同的點(diǎn),若,則線段MN的中點(diǎn)到y(tǒng)軸的距離為()A.8 B.4C. D.92.已知集合,,則A. B.C. D.3.已知直線l與拋物線交于不同的兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),若直線的斜率之積為,則直線l恒過(guò)定點(diǎn)()A. B.C. D.4.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.都有可能5.圓的圓心和半徑分別是()A., B.,C., D.,6.已知函數(shù)在區(qū)間有且僅有2個(gè)極值點(diǎn),則m的取值范圍是()A. B.C. D.7.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.8.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B.C. D.9.設(shè)是等差數(shù)列,是其公差,是其前n項(xiàng)的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值10.散點(diǎn)圖上有5組數(shù)據(jù):據(jù)收集到的數(shù)據(jù)可知,由最小二乘法求得回歸直線方程為,則的值為()A.54.2 B.87.64C.271 D.438.211.命題“若,都是偶數(shù),則也是偶數(shù)”的逆否命題是A.若是偶數(shù),則與不都是偶數(shù)B.若是偶數(shù),則與都不是偶數(shù)C.若不是偶數(shù),則與不都是偶數(shù)D.若不是偶數(shù),則與都不是偶數(shù)12.中國(guó)大運(yùn)河項(xiàng)目成功人選世界文化遺產(chǎn)名錄,成為中國(guó)第46個(gè)世界遺產(chǎn)項(xiàng)目,隨著對(duì)大運(yùn)河的保護(hù)與開發(fā),大運(yùn)河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團(tuán)乘游船從奧體公園碼頭出發(fā)順流而下至漕運(yùn)碼頭,又立即逆水返回奧體公園碼頭,已知游船在順?biāo)械乃俣葹?,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若不等式的解集是,則的值是___________.14.已知橢圓的右頂點(diǎn)為,為上一點(diǎn),則的最大值為______.15.已知點(diǎn)為拋物線的焦點(diǎn),,點(diǎn)為拋物線上一動(dòng)點(diǎn),當(dāng)最小時(shí),點(diǎn)恰好在以為焦點(diǎn)的雙曲線上,則該雙曲線的離心率為___________.16.已知空間直角坐標(biāo)系中,點(diǎn),,若,與同向,則向量的坐標(biāo)為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱柱中,四邊形為矩形,,,點(diǎn)E為棱的中點(diǎn),.(1)求證:平面平面;(2)求平面AEB與平面夾角的余弦值.18.(12分)已知的內(nèi)角的對(duì)邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長(zhǎng)的最大值.19.(12分)橢圓的左右焦點(diǎn)分別為,,焦距為,為原點(diǎn).橢圓上任意一點(diǎn)到,距離之和為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的斜率為2的直線交橢圓于、兩點(diǎn),求的面積.20.(12分)設(shè)a,b是實(shí)數(shù),若橢圓過(guò)點(diǎn),且離心率為.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)過(guò)橢圓E的上頂點(diǎn)P分別作斜率為,的兩條直線與橢圓交于C,D兩點(diǎn),且,試探究過(guò)C,D兩點(diǎn)的直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);否則,說(shuō)明理由.21.(12分)已知橢圓的一個(gè)頂點(diǎn)為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點(diǎn),直線BM與直線BN的斜率之積為,證明直線l過(guò)定點(diǎn)并求出該定點(diǎn)坐標(biāo)22.(10分)某學(xué)校一航模小組進(jìn)行飛機(jī)模型飛行高度實(shí)驗(yàn),飛機(jī)模型在第一分鐘時(shí)間內(nèi)上升了米高度.若通過(guò)動(dòng)力控制系統(tǒng),可使飛機(jī)模型在以后的每一分鐘上升的高度都是它在前一分鐘上升高度的(1)在此動(dòng)力控制系統(tǒng)下,該飛機(jī)模型在第三分鐘內(nèi)上升的高度是多少米?(2)這個(gè)飛機(jī)模型上升的最大高度能超過(guò)米嗎?如果能,求出從第幾分鐘開始高度超過(guò)米;如果不能,請(qǐng)說(shuō)明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】過(guò)分別作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,再過(guò)MN的中點(diǎn)作垂直于準(zhǔn)線,垂足為,然后利用梯形的中位線定理可求得結(jié)果【詳解】拋物線=的焦點(diǎn),準(zhǔn)線方程為直線如圖,過(guò)分別作垂直于準(zhǔn)線,垂足為,過(guò)MN的中點(diǎn)作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,因?yàn)?,所以,因?yàn)槭翘菪蔚闹形痪€,所以,所以線段MN的中點(diǎn)到y(tǒng)軸的距離為4,故選:B2、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點(diǎn)睛】本題主要考查了集合的交集運(yùn)算,屬于基礎(chǔ)題.3、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進(jìn)而得到的值,將直線的斜率之積為,用A,B點(diǎn)坐標(biāo)表示出來(lái),結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當(dāng)時(shí),,即直線l恒過(guò)定點(diǎn),故選:A.4、A【解析】求出圓心到直線的距離,然后與圓的半徑進(jìn)行大小比較即可求解.【詳解】解:圓的圓心,,因?yàn)閳A心到直線的距離,所以直線與圓的位置關(guān)系是相交,故選:A.5、D【解析】先化為標(biāo)準(zhǔn)方程,再求圓心半徑即可.【詳解】先化為標(biāo)準(zhǔn)方程可得,故圓心為,半徑為.故選:D.6、A【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合余弦型函數(shù)的性質(zhì)、極值的定義進(jìn)行求解即可.【詳解】由,,因?yàn)樵趨^(qū)間有且僅有2個(gè)極值點(diǎn),所以令,解得,因此有,故選:A7、A【解析】利用基本不等式可得,進(jìn)而可得,即求.【詳解】∵,∴,當(dāng)且僅當(dāng),即時(shí)取等號(hào),∴,,∴.故選:A.8、A【解析】將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得又,故在中,此即為外接球半徑,從而外接球表面積為故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬中檔題.9、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項(xiàng)的和的性質(zhì)可判斷每個(gè)選項(xiàng)的正誤,進(jìn)而可得正確選項(xiàng).【詳解】由可得,由可得,故選項(xiàng)B正確;由可得,因?yàn)楣?,故選項(xiàng)A正確,,所以,故選項(xiàng)C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項(xiàng)D正確;所以選項(xiàng)C不正確,故選:C10、C【解析】通過(guò)樣本中心點(diǎn)來(lái)求得正確答案.【詳解】,故,則,故.故選:C11、C【解析】命題的逆否命題是將條件和結(jié)論對(duì)換后分別否定,因此“若都是偶數(shù),則也是偶數(shù)”的逆否命題是若不是偶數(shù),則與不都是偶數(shù)考點(diǎn):四種命題12、A【解析】求出平均速度V,進(jìn)而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運(yùn)公園碼頭到漕運(yùn)碼頭之間的距離為1,則游船順流而下的時(shí)間為,逆流而上的時(shí)間為,則平均速度,由基本不等式可得,而,當(dāng)且僅當(dāng)時(shí),兩個(gè)不等式都取得“=”,而根據(jù)題意,于是.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用和是方程的兩根,再利用根與系數(shù)的關(guān)系即可求出和的值,即可得的值.【詳解】由題意可得:方程的兩根是和,由根與系數(shù)的關(guān)系可得:,所以,所以,故答案為:14、【解析】設(shè)出點(diǎn)P的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助二次函數(shù)計(jì)算最值作答.【詳解】橢圓的右頂點(diǎn)為,設(shè)點(diǎn),則,即,且,于是得,因,則當(dāng)時(shí),,所以的最大值為.故答案為:15、【解析】設(shè)點(diǎn),根據(jù)拋物線的定義表示出,將用表示,并逐步轉(zhuǎn)化為一個(gè)基本不等式形式,從而求出取最小值時(shí)的點(diǎn)的坐標(biāo),再根據(jù)雙曲線的定義及離心率的公式求值.【詳解】由題意可得,,,拋物線的準(zhǔn)線為,設(shè)點(diǎn),根據(jù)對(duì)稱性,不妨設(shè),由拋物線的定義可知,又,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,此時(shí),設(shè)以為焦點(diǎn)的雙曲線方程為,則,即,又,,所以離心率.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是將的坐標(biāo)表達(dá)式逐漸轉(zhuǎn)化為一個(gè)可以用基本不等式求最值的式子,從而找出取最小值時(shí)的點(diǎn)的坐標(biāo).16、【解析】求出坐標(biāo),根據(jù)給條件表示出坐標(biāo),利用向量模的坐標(biāo)表示計(jì)算作答.【詳解】因,,則,因與同向,則設(shè),因此,,于是得,解得,則,所以向量的坐標(biāo)為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)矩形及勾股定理的逆定理可得線面垂直的條件,再由平面,即可證明面面垂直;(2)建立空間直角坐標(biāo)后,求出相關(guān)法向量,再用夾角公式即可.【小問1詳解】證明:由三棱柱的性質(zhì)及可知四邊形為菱形又∵∴為等邊三角形∴,又∵,∴,∴又∵四邊形為矩形∴又∵∴平面又∵平面∴平面平面.【小問2詳解】以B為原點(diǎn)BE為x軸,為y軸,BA為E軸建立空間直角坐標(biāo)系,如圖所示,,,,,,設(shè)平面的法向量為.則即∴,又∵平面ABE的法向量為,∴,∴平面ABE與平面夾角的余弦值為.18、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結(jié)合基本不等式可得的最大值為4,從而可求出三角形周長(zhǎng)的最大值【小問1詳解】由,得

,由正弦定理,得,即.在中,由,得.又,所以.【小問2詳解】根據(jù)題意,得,由余弦定理,得,即,整理得,當(dāng)且僅當(dāng)時(shí),取等號(hào),所以的最大值為所以.所以的周長(zhǎng)的最大值為

.19、(1)(2)【解析】(1)根據(jù)題意和橢圓的定義可知a,c,再根據(jù),即可求出b,由此即可求出橢圓的方程;(2)求出直線方程,將其與橢圓方程聯(lián)立,根據(jù)弦長(zhǎng)公式求出的長(zhǎng)度,再根據(jù)點(diǎn)到直線的距離公式求出點(diǎn)O到直線AB的距離,再根據(jù)面積公式即可求出結(jié)果.【小問1詳解】由題意可得,,∴,,,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】直線l的方程為,代入橢圓方程得,設(shè),,則,,,∴,又∵點(diǎn)O到直線AB的距離,∴,即△OAB的面積為.20、(1);(2)過(guò)定點(diǎn),坐標(biāo)為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【小問1詳解】因?yàn)闄E圓離心率為,所以有.橢圓過(guò)點(diǎn),所以,由可解:,所以該橢圓方程為:;【小問2詳解】由(1)可知:,設(shè)直線的方程為:,若,由橢圓的對(duì)稱性可知:,不符合題意,當(dāng)時(shí),直線的方程與橢圓方程聯(lián)立得:,設(shè),,,因?yàn)?,所以,把代入得:,所以有或,解得:或,?dāng)時(shí),直線,直線恒過(guò)定點(diǎn),此時(shí)與點(diǎn)重合,不符合題意,當(dāng)時(shí),,直線恒過(guò)點(diǎn),當(dāng)直線不存在斜率時(shí),此時(shí),,因?yàn)?,所以,兩點(diǎn)不在橢圓上,不符合題意,綜上所述:過(guò)C,D兩點(diǎn)的直線過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:根據(jù)一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.21、(1);(2)答案見解析,直線過(guò)定點(diǎn).【解析】(1)首先根據(jù)頂點(diǎn)為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設(shè),,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關(guān)系得到,從而得到直線恒過(guò)的定點(diǎn).【詳解】(1)一個(gè)頂點(diǎn)為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設(shè),,此時(shí),與題設(shè)矛盾,故直線l斜率必存在設(shè),,,聯(lián)立得,∴,∵,即∴,化為,解得或(舍去),即直線過(guò)定點(diǎn)【點(diǎn)睛

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論