




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版九年級上冊數(shù)學(xué)知識點總結(jié)21.一1元二次方程易錯點:①力和②方程兩個根的取舍知識點一:一元二次方程的定義:等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。注意一下幾點:①只含有一個未知數(shù);②未知數(shù)的最高次數(shù)是2③是整式方程。知識點二:元二次方程的一般形式一般形式:/其中,是二次項,是二次項系數(shù);是一次項,是一次項系數(shù);是常數(shù)項。知識點三:一元二次方程的根:使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定義是解方程過程中驗根的依據(jù)。21中降2次——解一元二次方程21中2配中方1法知識點一直:接開平方法解一元二次方程()如果方程的一邊可以化成含未知數(shù)的代數(shù)式的平方,另一邊是非負(fù)數(shù),可以直接開平方。一般地,對于形如三的方程,根據(jù)平方根的定義可解得=a-1()直接開平方法適用于解形如或(形式的方程,如果三0就可以利用直接開平方法。用直接開平方法求一元二次方程的根,要正確運用平方根的性質(zhì),即正數(shù)的平方根有兩個,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。()直接開平方法解一元二次方程的步驟是:①移項;②使二次項系數(shù)或含有未知數(shù)的式子的平方項的系數(shù)為i③兩邊直接開平方,使原方程變?yōu)閮蓚€一元二次方程;④解一元一次方程,求出原方程的根。知識點二配:方法解一元二次方程通過配成完全平方形式來解一元二次方程的方法,叫做配方法,配方的目的是降次,把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解。配方法的一般步驟可以總結(jié)為:一移、二除、三配、四開。把常數(shù)項移到等號的右邊;方程兩邊都除以二次項系數(shù);方程兩邊都加上一次項系數(shù)一半的平方,把左邊配成完全平方式;若等號右邊為非負(fù)數(shù),直接開平方求出方程的解。21中2公中式2法知識點一:公式法解一元二次方程()一般地,對于一元二次方程力,如果三,那么方程的兩個根I一b±?,b2—4ac為——、,這個公式叫做一元二次方程的求根公式,利用求根公式,我2a們可以由一元二方程的系數(shù)的值直接求得方程的解,這種解方程的方法叫做公式法。一元二次方程求根公式的推導(dǎo)過程,就是用配方法解一般形式的一元二次方程力的過程。公式法解一元二次方程的具體步驟:①方程化為一般形式:力0一般化為正值②確定公式中的值,注意符號;③求出的值;④若40則把和的值代入公式即可求解,若4,則方程無實數(shù)根(有虛數(shù)根--高中學(xué)的。知識點二:一元二次方程根的判別式式子叫做方程力根的判別式,通常用希臘字母△表示它,即421..23因式分解法知識點一因:式分解法解一元二次方程把一元二次方程的一邊化為0,而另一邊分解成兩個一次因式的積,進(jìn)而轉(zhuǎn)化為求兩個求一元一次方程的解,這種解方程的方法叫做因式分解法。因式分解法的詳細(xì)步驟:移項,將所有的項都移到左邊,右邊化為0;把方程的左邊分解成兩個因式的積,可用的方法有提公因式、平方差公式和完全平方公式;令每一個因式分別為零,得到一元一次方程;解一元一次方程即可得到原方程的解。知識點二用:合適的方法解一元一次方程方法名稱理論依據(jù)適用范圍直接開平方法平方根的意義形如或()(配方法完全平方公式所有一元二次方程公式法配方法所有一元二次方程因式分解法當(dāng),則或一邊為0另一邊易于分解成兩個一次因式的積的一元二次方程。一4元二:次方程的根與系數(shù)的關(guān)系若一元二次方程的兩個根為則有121212若一元二次方程c有兩個實數(shù)根則有,-bc1212a12a21.實3際問題與一元二次方程知識點一:列一元二次方程解應(yīng)用題的一般步驟:審:是指讀懂題目,弄清題意,明確哪些是已知量,哪些是未知量以及它們之間的等量關(guān)系。設(shè):是指設(shè)元,也就是設(shè)出未知數(shù)。列:就是列方程,這是關(guān)鍵步驟,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個相等含義,然后列代數(shù)式表示這個相等關(guān)系中的各個量,就得到含有未知數(shù)的等式,即方程。解:就是解方程,求出未知數(shù)的值。驗:是指檢驗方程的解是否保證實際問題有意義,符合題意。答:寫出答案。知識點二列:一元二次方程解應(yīng)用題的幾種常見類型數(shù)字問題三個連續(xù)整數(shù):若設(shè)中間的一個數(shù)為,則另兩個數(shù)分別為,+三個連續(xù)偶數(shù)(奇數(shù)):若中間的一個數(shù)為,則另兩個數(shù)分別為,三位數(shù)的表示方法:設(shè)百位、十位、個位上的數(shù)字分別為,則這個三位數(shù)是增長率問題設(shè)初始量為,終止量為,平均增長率或平均降低率為,則經(jīng)過兩次的增長或降低后的等量關(guān)系為(土X)。(3)利潤問題利潤問題常用的相等關(guān)系式有:①總利潤總銷售價總成本;②總利潤單位利潤x總銷售量;③利潤成本x利潤率(4)圖形的面積問題根據(jù)圖形的面積與圖形的邊、高等相關(guān)元素的關(guān)系,將圖形的面積用含有未知數(shù)的代數(shù)式表示出來,建立一元二次方程。二次:函數(shù)知識點歸納一、相關(guān)概念及定義1二次函數(shù)的概念:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),aw0)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù)aw0,而b,c可以為零.二次函數(shù)的定義域是全體實數(shù).2二次函數(shù)y=ax2+bx+c的結(jié)構(gòu)特征:()等號左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是.()a,b,c是常數(shù),a是二次項系數(shù),b是一次項系數(shù),c是常數(shù)項.二、二次函數(shù)各種形式之間的變換、二次函數(shù)y=ax2+bx+c用配方法可化成:y=aQ-h1+k的形式,其中h--b,k=4a-b22a4a、二次函數(shù)由特殊到一般,可分為以下幾種形式:①y=ax2:②y=ax2+k=③y=aQ-h%;④y=a(x-h)2+k;⑤y=ax2+bx+c三、二次函數(shù)解析式的表示方法一般式:y=ax2+bx+c(a,b,c為常數(shù),aw0);頂點式:y=a(x-h)2+k(a,h,k為常數(shù),aw0);3兩根式:y=a(x-x)(x-x)(aw0,x,x是拋物線與x軸兩交點的橫坐標(biāo))2124、注意:任何二次函數(shù)的解析式都可以化成一般式或頂點式,但并非所有的二次函數(shù)都可以寫成交點式,只有拋物線與%軸有交點,即匕2-4ac>0時,拋物線的解析式才可以用交點式表示.二次函數(shù)解析式的這三種形式可以互化.四、二次函數(shù)y=ax2+bx+c圖象的畫法i五點繪圖法:利用配方法將二次函數(shù)y=ax2+bx+c化為頂點式y(tǒng)=a(x-h)2+k,確定其開口方向、對稱軸及頂點坐標(biāo),然后在對稱軸兩側(cè),左右對稱地描點畫圖.一般我們選取的五點為:頂點、與y軸的交點(0,c)、以及(0,c)關(guān)于對稱軸對稱的點(2h,c)、與x軸的交點(x,0),(x,0)(若與x軸沒有交點,則取兩組關(guān)于對稱軸對稱的點)122畫草圖時應(yīng)抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,與y軸的交點五、二次函數(shù)y二ax2的性質(zhì)a的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)a>0向上(0,0)y軸x>0時,y隨x的增大而增大;x<0時,y隨x的增大而減??;x=0時,y有最小值0.a<0向下(0,0)y軸x>0時,y隨x的增大而減小;x<0時,y隨x的增大而增大;x=0時,y有最大值0.六、二次函數(shù)y=ax2+c的性質(zhì)a的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)a>0向上(0,c)y軸x>0時,y隨x的增大而增大;x<0時,y隨x的增大而減小;x=0時,y有最小值c.a<0向下(0,c)y軸x>0時,y隨x的增大而減??;x<0時,y隨x的增大而增大;x=0時,y有最大值c.七、二次函數(shù)y=a(x-h)2的性質(zhì):a的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)a>0向上(h,0)x>h時,y隨x的增大而增大;x<h時,y隨x的增大而減??;x=h時,y有最小值0.a<0向下(h,0)x>h時,y隨x的增大而減??;x<h時,y隨x的增大而增大;x二h時,y有最大值0.八、二次函數(shù)ka(x-h?+k的性質(zhì)a的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)a>0向上(h,k)x>h時,y隨x的增大而增大;x<h時,y隨x的增大而減小;x=h時,y有最小值k.a<0向下(h,k)x>h時,y隨x的增大而減?。粁<h時,y隨x的增大而增大;x二h時,y有最大值k.九、拋物線y=ax2+bx+c的三要素:開口方向、對稱軸、頂點ia的符號決定拋物線的開口方向:當(dāng)a>0時,開口向上;當(dāng)a<0時,開口向下;a相等,拋物線的開口大小、形狀相同b2對稱軸:平行于y軸(或重合)的直線記作x=—-特別地,y軸記作直線x=02ab4ac-b23頂點坐標(biāo):C--,)2a4a4頂點決定拋物線的位置幾個不同的二次函數(shù),如果二次項系數(shù)a相同,那么拋物線的開口方向、開口大小完全相同,只是頂點的位置不同.十、拋物線y=ax2+bx+c中,a,b,c與函數(shù)圖像的關(guān)系、二次項系數(shù)a:二次函數(shù)y=ax2+bx+c中,a作為二次項系數(shù),顯然a。0.⑴當(dāng)a>0時,拋物線開口向上,a越大,開口越小,反之a(chǎn)的值越小,開口越大;⑵當(dāng)a<0時,拋物線開口向下,a越小,開口越小,反之a(chǎn)的值越大,開口越大.總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,|a|的大小決定開口的大小.一次項系數(shù)b:在二次項系數(shù)a確定的前提下,b決定了拋物線的對稱軸.⑴在a>0的前提下,當(dāng)b>0時,-2<0,即拋物線的對稱軸在y軸左側(cè);2a當(dāng)b=0時,--b=0,即拋物線的對稱軸就是y軸;2a當(dāng)b<0時,--b>0,即拋物線對稱軸在y軸的右側(cè).⑵在4<0的前提下,結(jié)論剛好與上述相反,即當(dāng)b>0時,一A〉0,即拋物線的對稱軸在y軸右側(cè);24當(dāng)b=0時,一A=0,即拋物線的對稱軸就是y軸;24當(dāng)b<0時,一A<0,即拋物線對稱軸在y軸的左側(cè).24總結(jié)起來,在4確定的前提下,b決定了拋物線對稱軸的位置.3常數(shù)項C⑴當(dāng)C>0時,拋物線與y軸的交點在%軸上方,即拋物線與y軸交點的縱坐標(biāo)為正;⑵當(dāng),二0時,拋物線與y軸的交點為坐標(biāo)原點,即拋物線與y軸交點的縱坐標(biāo)為0;⑶當(dāng)c<0時,拋物線與y軸的交點在%軸下方,即拋物線與y軸交點的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點的位置.總之,只要4,b,c都確定,那么這條拋物線就是唯一確定的.十一、求拋物線的頂點、對稱軸的方法7(b)24ac一b2.Eb4ac一b2、)工工4戶工日、公式法:y=ax2+bx+c=ax+——+,??頂點是(———,),對稱軸是、公式法:I2a)4a2a4a直線x:—一2a2配方法:運用配方的方法,將拋物線的解析式化為y=a(x-h}+k的形式,得到頂點為hk)對稱軸是直線x二h3、運用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,所以對稱軸的連線的垂直平分線是拋物線的對稱軸,對稱軸與拋物線的交點是頂點.用配方法求得的頂點,再用公式法或?qū)ΨQ性進(jìn)行驗證,才能做到萬無一失.十二、用待定系數(shù)法求二次函數(shù)的解析式一般式:y=ax2+bx+c已知圖像上三點或三對x、y的值,通常選擇一般式頂點式:y=a(x-h1+k已知圖像的頂點或?qū)ΨQ軸,通常選擇頂點式交點式:已知圖像與x軸的交點坐標(biāo)x、x,通常選用交點式:y=aQ-x)Q-x)1212十三、直線與拋物線的交點1y軸與拋物線y=ax2+bx+c得交點為c2與y軸平行的直線x=h與拋物線y=ax2+bx+c有且只有一個交點hah2+bh+c、拋物線與x軸的交點二次函數(shù)y=ax2+bx+c的圖像與x軸的兩個交點的橫坐標(biāo)x、,是對應(yīng)一元二次方程ax2+bx+c=0的兩個實數(shù)根拋物線與x軸的交點情況可以由對應(yīng)的一元二次方程的根的判別式判定:①有兩個交點OA>0O拋物線與x軸相交;②有一個交點(頂點在x軸上)OA二0O拋物線與x軸相切;③沒有交點OA<0O拋物線與x軸相離4平行于x軸的直線與拋物線的交點可能有0個交點、1個交點、2個交點.當(dāng)有2個交點時,兩交點的縱坐標(biāo)相等,設(shè)縱坐標(biāo)為k,則橫坐標(biāo)是ax2+bx+c=k的兩個實數(shù)根5一次函數(shù)y=kx+n(k豐0)的圖像/與二次函數(shù)y=ax2+bx+c(a豐0)的圖像G的交點,由\y-kx+n方程組f的解的數(shù)目來確定:①方程組有兩組不同的解時ol與G有兩個交[y-ax2+bx+c點②方程組只有一組解時ol與G只有一個交點;③方程組無解時Ol與G沒有交點
、拋物線與X軸兩交點之間的距離:若拋物線y=ax2+bx+C與x軸兩交點為A(x,0)B(x,0),由于x、x是方程ax2+bx+c=0的兩個根,故TOC\o"1-5"\h\z1212bcx+x=-—,x?x=—2a12a"…II(r(V-——『b¥4cbb2-4ac聲AB=x-x=Jb-x力=J(x-x力-4xx=1---一二二12112V1212\[a)a|a||a|十四、二次函數(shù)圖象的對稱二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點式表達(dá)1關(guān)于x軸對稱y=ax2+bx+c關(guān)于x軸對稱后,得到的解析式是y=-ax2-bx-c;y=a(x-仆+k關(guān)于x軸對稱后,得到的解析式是y=-a(x-h?-k;2關(guān)于y軸對稱y=ax2+bx+c關(guān)于y軸對稱后,得到的解析式是y=ax2-bx+c;y=a(x-h)2+k關(guān)于y軸對稱后,得到的解析式是y=a(x+h)2+k;3關(guān)于原點對稱y=ax2+bx+c關(guān)于原點對稱后,得到的解析式是y=-ax2+bx-c;y=a(x-h)2+k關(guān)于原點對稱后,得到的解析式是y=-a(x+h)-k;4關(guān)于頂點對稱y=y=ax2+bx+c關(guān)于頂點對稱后,y=a(x-h)2+k關(guān)于頂點對稱后,、關(guān)于點(m,n)對稱得到的解析式是y二-a2-bx+c-£;
得到的解析式是y=-a(x-h)2+k.y=a(x-h)2+k關(guān)于點(m,n)對稱后,得到的解析式是y=-a(x+h-2m>+2n-k總結(jié):根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此|a|永遠(yuǎn)不變.求拋物線的對稱拋物線的表達(dá)式時,可以依據(jù)題意或方便運算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點坐標(biāo)及開口方向,再確定其對稱拋物線的頂點坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達(dá)式.十五、二次函數(shù)圖象的平移平移步驟:⑴將拋物線解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k,確定其頂點坐標(biāo)(h,k);⑵保持拋物線y=ax2的形狀不變,將其頂點平移到(h,k)處,具體平移方法如下:y=axy=ax2+k向上(k>0)y=axy=ax2+k向上(k>0)【或向下;k<0)】平移k個單位隼向右5>0)【或左5<0)】平移Ik個單位向上/>0)【或下(k<0)]平移lkI個單位向右5>0)【或左⑺<0)】平移Ik個單位>向上(k>0)[或下/<0)】平移kl個單位向右(h>0)【或左5<0)】平移Ik個單位y=a(x-h)2y=a(x-h)2+k平移規(guī)律在原有函數(shù)的基礎(chǔ)上“h值正右移,負(fù)左移;k值正上移,負(fù)下移”.概括成八個字“左加右減,上加下減”.
十六、根據(jù)條件確定二次函數(shù)表達(dá)式的幾種基本思路。()已知拋物線的解析式。()已知拋物線()已知拋物線的解析式。()已知拋物線2.頂點式。()已知拋物線(1)已知拋物線3交.點式。(1)已知拋物線與經(jīng)過(73,),(2邛,),「)三點,求拋物線24經(jīng)過點(,),求拋物線的解析式。頂點為(2),求拋物線的解析式。的頂點為(3),求拋物線的解析式。軸兩個交點分別為(,)求拋物線的解析式。的解析(7知拋物線線與軸兩個交點(4),(')求拋物線=的解析式。4定.點式。()在直角坐標(biāo)系中,不論取何值,拋物線y=-2x2+52ax+2a-2經(jīng)過軸上一定點,直線y=(a-2)x+2經(jīng)過點求拋物線的解析式。()拋物線與軸的一定交點經(jīng)過直線,求拋物線的解析式。()拋物線過直線上的定點A求拋物線的解析式。5平.移式。()把拋物線向左平移個單位長度,再向下平移個單位長度,得到拋物線求此拋物線解析式。求2拋的物此線的解析式()拋物線y=-x2+x-求2拋的物此線的解析式.距離式。(1)拋物線+與軸的兩個交點間的距離為2求拋物線的解析式。()已知拋物線求此拋物線的解析式。7.對稱軸式。()拋物線與距離的2倍,求拋物線的解析式。()已知拋物線(1)拋物線+與軸的兩個交點間的距離為2求拋物線的解析式。()已知拋物線求此拋物線的解析式。7.對稱軸式。()拋物線與距離的2倍,求拋物線的解析式。()已知拋物線交>與軸交于、兩點,與軸交于點,且的軸有兩個交點,這兩點間的距離等于拋物線頂點到軸于(點在點左邊)兩點,交軸于點軸此且3Oc求此拋物線的解析式。4.對稱式。()平行四邊形對角線在軸上,且,),,(,)。交軸于,將三角形(2)求與拋物線9切.點式。(1)已知直線沿軸折疊,點到關(guān)于軸(或a與拋物線的位置,求經(jīng)過三點的拋物線的解析式。軸)對稱的拋物線的解析式。有唯一公共點,求拋物線的解析式。()直線與拋物線的唯一公共點(2)求拋物線的解析式。0判.別式式。()已知關(guān)于的一元二次方程()有兩個相等的實數(shù)根,求拋物線解析式。(2)已知拋物線的頂點在軸上求拋物線的解析式。3、旋轉(zhuǎn)23.圖1形的旋轉(zhuǎn)知識點一:旋轉(zhuǎn)的定義在平面內(nèi),把一個平面圖形繞著平面內(nèi)某一點轉(zhuǎn)動一個角度,就叫做圖形的旋轉(zhuǎn),點叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。我們把旋轉(zhuǎn)中心、旋轉(zhuǎn)角度、旋轉(zhuǎn)方向稱為旋轉(zhuǎn)的三要素。知識點二:旋轉(zhuǎn)的性質(zhì)旋轉(zhuǎn)的特征:(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(3)旋轉(zhuǎn)前后的圖形全等。理解以下幾點:(1)圖形中的每一個點都繞旋轉(zhuǎn)中心旋轉(zhuǎn)了同樣大小的角度。(2)對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段相等,對應(yīng)角相等。(3)圖形的大小和形狀都沒有發(fā)生改變,只改變了圖形的位置。知識點三:利用旋轉(zhuǎn)性質(zhì)作圖旋轉(zhuǎn)有兩條重要性質(zhì):(1)任意一對對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(2)對應(yīng)點到旋轉(zhuǎn)中心的距離相等,它是利用旋轉(zhuǎn)的性質(zhì)作圖的關(guān)鍵。步驟可分為:①連:即連接圖形中每一個關(guān)鍵點與旋轉(zhuǎn)中心;②轉(zhuǎn):即把直線按要求繞旋轉(zhuǎn)中心轉(zhuǎn)過一定角度(作旋轉(zhuǎn)角)③截:即在角的另一邊上截取關(guān)鍵點到旋轉(zhuǎn)中心的距離,得到各點的對應(yīng)點;④接:即連接到所連接的各點。.中2心對稱知識點一:中心對稱的定義中心對稱:把一個圖形繞著某一個點旋轉(zhuǎn)18°0,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。注意以下幾點:中心對稱指的是兩個圖形的位置關(guān)系;只有一個對稱中心;繞對稱中心旋轉(zhuǎn)18°0兩個圖形能夠完全重合。知識點二:作一個圖形關(guān)于某點對稱的圖形要作出一個圖形關(guān)于某一點的成中心對稱的圖形,關(guān)鍵是作出該圖形上關(guān)鍵點關(guān)于對稱中心的對稱點。最后將對稱點按照原圖形的形狀連接起來,即可得出成中心對稱圖形。知識點三:中心對稱的性質(zhì)有以下幾點:關(guān)于中心對稱的兩個圖形上的對應(yīng)點的連線都經(jīng)過對稱中心,并且都被對稱中心平分;關(guān)于中心對稱的兩個圖形能夠互相重合,是全等形;關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或共線)且相等。知識點四:中心對稱圖形的定義把一個圖形繞著某一個點旋轉(zhuǎn)18°0,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。知識點五:關(guān)于原點對稱的點的坐標(biāo)在平面直角坐標(biāo)系中,如果兩個點關(guān)于原點對稱,它們的坐標(biāo)符號相反,即點()關(guān)于原點對稱點為()。、圓24.圓1圓.1
知識點一:圓的定義圓的定義:第一種:在一個平面內(nèi),線段繞它固定的一個端點旋轉(zhuǎn)一周,另一個端點所形成的圖形叫作圓。固定的端點叫作圓心,線段叫作半徑。第二種:圓心為,半徑為的圓可以看成是所有到定點的距離等于定長的點的集合。比較圓的兩種定義可知:第一種定義是圓的形成進(jìn)行描述的,第二種是運用集合的觀點下的定義,但是都說明確定了定點與定長,也就確定了圓。知識點二:圓的相關(guān)概念弦:連接圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫作直徑?;。簣A上任意兩點間的部分叫做圓弧,簡稱弧。圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫做半圓。等圓:等夠重合的兩個圓叫做等圓。等弧:在同圓或等圓中,能夠互相重合的弧叫做等弧。弦是線段,弧是曲線,判斷等弧首要的條件是在同圓或等圓中,只有在同圓或等圓中完全重合的弧才是等弧,而不是長度相等的弧。24.1垂.直2于弦的直徑知識點一;圓的對稱性圓是軸對稱圖形,任何一條直徑所在直線都是它的對稱軸。知識點二;垂徑定理(1)垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。如圖所示,直徑為D是弦,且XB垂徑定理的推論:平分弦(不是直徑)的直徑垂直于弦,如上圖所示,直徑與非直徑弦相交于點,CABD是弦,且XB垂徑定理的推論:平分弦(不是直徑)的直徑垂直于弦,如上圖所示,直徑與非直徑弦相交于點,CABM平分弦所對的兩條弧注意:因為圓的兩條直徑必須互相平分,所以垂徑定理的推論中,被平分的弦必須不是直徑,否則結(jié)論不成立?;?、3弦、圓心角知識點弦、弧、圓心角的關(guān)系弦、弧、圓心角之間的關(guān)系定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。在同圓或等圓中,如果兩個圓心角,兩條弧,兩條弦中有一組量相等,那么它們所對應(yīng)的其余的各組量也相等。注意不能忽略同圓或等圓這個前提條件,如果丟掉這個條件,即使圓心角相等,所對的弧、弦也不一定相等,比如兩個同心圓中,兩個圓心角相同,但此時弧、弦不一定相等。圓.周4角知識點一:圓周角定理圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對弦是直徑。
圓周角定理揭示了同弧或等弧所對的圓周角與圓心角的大小關(guān)系。“同弧或等弧”是不能改為“同弦或等弦”的,否則就不成立了,因為一條弦所對的圓周角有兩類。知識點二:圓內(nèi)接四邊形及其性質(zhì)圓內(nèi)接多邊形:如果一個多邊形的所有頂點都在同一個圓上,這個多邊形叫做圓內(nèi)接多邊形,這個圓叫做這個多邊形的外接圓。圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角互補。24.點2、直線、圓和圓的位置關(guān)系24.2點.和1圓的位置關(guān)系知識點一:點與圓的位置關(guān)系點與圓的位置關(guān)系有:點在圓外,點在圓上,點在圓內(nèi)三種。()用數(shù)量關(guān)系表示:若設(shè)。的半徑是,點到圓的距離,則有:;點在圓內(nèi)g<。點在圓外g>r點在圓上U;點在圓內(nèi)g<。()經(jīng)過一個點的圓(如點)以點外的任意一點(如點)為圓心,以為半徑作圓即可,如圖,這樣的圓可以作無數(shù)個。以作無數(shù)個。()經(jīng)過兩點的圓(如點、)以線段的垂直平分線上的任意一點(如點)為圓心,以(或)為半徑作圓即可,如圖,這樣的圓可以作無數(shù)個。(3)經(jīng)過三點的圓①經(jīng)過在同一條直線上的三個點不能作圓②不在同一條直線上的三個點確定一個圓,即經(jīng)過不在同一條直線上的三個點可以作圓,且只能作一個圓。如經(jīng)過不在同一條直線上的三個點、、作圓,作法:連接B(或、或、)并作它們的垂直平分線,兩條垂直平分線相交于點。B(或、或、)并作它們的垂直平分線,兩條垂直平分線相交于點。以點為圓心,以(或、(的長為半徑作圓即可,如圖,這樣的圓只能作一(2)外接圓的圓心是三角形三條邊的垂直平分線的交點,叫做這個三角形的外心。知識點四:反證法反證法:假設(shè)命題的結(jié)論不成立,經(jīng)過推理得出矛盾,由矛盾斷定所作假設(shè)不正確,從而得到原命題成立,這種證明命題的方法叫做反證法。反證法的一般步驟:假設(shè)命題的結(jié)論不成立;從假設(shè)出發(fā),經(jīng)過邏輯推理,推出或與定義,或與公理,或與定理,或與已知等相矛盾的結(jié)論;由矛盾判定假設(shè)不正確,從而得出原命題正確。24.2直.線2和圓的位置關(guān)系知識點一:直線與圓的位置關(guān)系直線與圓的位置關(guān)系有:相交、相切、相離三種。直線與圓的位置關(guān)系可以用數(shù)量關(guān)系表示若設(shè)。的半徑是,直線與圓心的距離為,則有:直線和。相交0<;直線和。相切=>;直線和。相離>。知識點二:切線的判定和性質(zhì)切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。切線的性質(zhì)定理:圓的切線垂直于過切點的半徑。切線的其他性質(zhì):切線與圓只有一個公共點;切線到圓心的距離等于半徑;經(jīng)過圓心且垂直于切線的直線必過切點;必過切點且垂直于切線的直線必經(jīng)過圓心。知識點三:切線長定理切線長的定義:經(jīng)過園外一點作圓的切線,這點和切點之間的線段的長,叫做這點到圓的切線長。切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。注意:切線和切線長是兩個完全不同的概念,必須弄清楚切線是直線,是不能度量的;切線長是一條線段的長,這條線段的兩個端點一個是在圓外一點,另一個是切點。知識點四:三角形的內(nèi)切圓和內(nèi)心(1三)角形的內(nèi)切圓定義:與三角形各邊都相切的圓叫做三角形的內(nèi)切圓。這個三角形叫做圓的外切三角形。(2三)角形的內(nèi)心:三角形內(nèi)切圓的圓心叫做三角形的內(nèi)心。(3注)意:三角形的內(nèi)心是三角形三條角平分線的交點,所以當(dāng)三角形的內(nèi)心已知時,過三角形的頂點和內(nèi)心的射線,必平分三角形的內(nèi)角。24.2圓.和3圓的位置關(guān)系知識點一:圓與圓的位置關(guān)系圓與圓的位置關(guān)系有五種:如果兩個圓沒有公共點,就說這兩個圓相離,包括外離和內(nèi)含兩種;如果兩個圓只有一個公共點,就說這兩個圓相切,包括內(nèi)切和外切兩種;如果兩個圓有兩個公共點,就說這兩個圓相交。圓與圓的位置關(guān)系可以用數(shù)量關(guān)系來表示:若設(shè)兩圓圓心之間的距離為,兩圓的半徑分別是且〈,則有.”外離O:…曹圓外切0兩圓相交口<<兩圓內(nèi)切=>兩圓內(nèi)含力〈24.正3多邊2形和1圓21知識點一:正多邊形的外接圓和圓的內(nèi)接正多邊形正多邊形與圓的關(guān)系非常密切:把圓分成(是大于的自然數(shù))等份,順次連接各分
點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓。正多邊形的中心:一個正多邊形的外接圓的圓心叫做這個正多邊形的中心。正多邊形的半徑:外接圓的半徑叫做正多邊形的半徑。正多邊形的中心角:正多邊形每一條邊所對的圓心角叫做正多邊形的中心角。正多邊形的邊心距:中心到正多邊形一邊的距離叫做正多邊形的邊心距。知識點二:正多邊形的性質(zhì)()正邊形的半徑和邊心距把正多邊形分成個全等的直角三角形。()所有的正多邊形都是軸對稱圖形,每個正邊形共有條對稱軸,每條對稱軸都經(jīng)過正邊形的中心;當(dāng)正邊形的邊數(shù)為偶數(shù)時,這個正邊形也是中心對稱圖形,正邊形的中心就是對稱中心。()正邊形的每一個內(nèi)角等于"一2"180°,中心角和外角相等,等于"。nn24.弧4長和扇形面積n兀R知識點一:弧長公式=80在半徑為的圓中,°的圓心角所對的弧長就是圓的周長n,所以°的圓心角所對的弧長的計算公式=0Xn=8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專注2024年CAD工程師認(rèn)證考試試題及答案的學(xué)習(xí)
- 二零二五店面租賃的合同范例
- 加強商務(wù)禮儀師考試知識儲備的方法試題及答案
- 理論聯(lián)系實際質(zhì)量工程師試題及答案
- 機械工程師資格證備考策略與試題及答案
- 質(zhì)量工程師資格2024年考前復(fù)習(xí)及應(yīng)試技巧集錦試題及答案
- 全新子女撫養(yǎng)協(xié)議書
- 二零二五孟安的離婚協(xié)議書
- 便利店加盟協(xié)議書范文二零二五年
- 電子商務(wù)聘用協(xié)議二零二五年
- 2018年西藏中考化學(xué)真題及答案
- 妊娠期糖尿病產(chǎn)后護(hù)理
- SJ-T 11841.2.2-2022 顯示系統(tǒng)視覺舒適度 第2-2部分:平板顯示-藍(lán)光測量方法
- 代收代付協(xié)議書模板(2篇)
- 政務(wù)新聞攝影技巧培訓(xùn)課件
- 2024年放射工作人員放射防護(hù)培訓(xùn)考試題及答案
- 《第七天》讀書分享交流會
- 老人疫苗接種健康知識講座
- 2024年同等學(xué)力申碩-同等學(xué)力(政治學(xué))歷年高頻考點試卷專家薈萃含答案
- 感染科業(yè)務(wù)培訓(xùn)計劃
- 鐵路工程項目工程量清單
評論
0/150
提交評論