




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
關于函數(shù)的最大最小值與導數(shù)第1頁,講稿共21頁,2023年5月2日,星期三aby=f(x)xoyy=f(x)xoyabf'(x)>0f'(x)<0復習:一、函數(shù)單調(diào)性與導數(shù)關系如果在某個區(qū)間內(nèi)恒有,則為常數(shù).設函數(shù)y=f(x)在某個區(qū)間內(nèi)可導,f(x)為增函數(shù)f(x)為減函數(shù)第2頁,講稿共21頁,2023年5月2日,星期三二、函數(shù)的極值定義設函數(shù)f(x)在點x0附近有定義,如果對X0附近的所有點,都有f(x)<f(x0),
則f(x0)是函數(shù)f(x)的一個極大值,記作y極大值=f(x0);如果對X0附近的所有點,都有f(x)>f(x0),
則f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0);◆函數(shù)的極大值與極小值統(tǒng)稱為極值.使函數(shù)取得極值的點x0稱為極值點第3頁,講稿共21頁,2023年5月2日,星期三2、求函數(shù)極值(極大值,極小值)的一般步驟:求定義域求導求極值點列表寫極值左正右負極大值,左負右正極小值第4頁,講稿共21頁,2023年5月2日,星期三導數(shù)的應用之三、求函數(shù)最值.極值是一個局部概念,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是最大或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)最大或最小。在某些問題中,往往關心的是函數(shù)在整個定義域區(qū)間上,哪個值最大或最小的問題,這就是我們通常所說的最值問題.
第5頁,講稿共21頁,2023年5月2日,星期三探究如何求出函數(shù)在[a,b]上的最值?第6頁,講稿共21頁,2023年5月2日,星期三觀察右邊一個定義在區(qū)間[a,b]上的函數(shù)y=f(x)的圖象:xX2oaX3bx1yy=f(x)發(fā)現(xiàn)圖中
是極小值,
是極大值,在區(qū)間上的函數(shù)的最大值是
,最小值是
。f(x2)f(x1)f(x3)f(x3)f(b)1.“最值”與“極值”有怎樣的區(qū)別和聯(lián)系呢?2.怎樣得到函數(shù)最值?思考第7頁,講稿共21頁,2023年5月2日,星期三“最值”與“極值”的有怎樣的區(qū)別和聯(lián)系呢?①、“最值”是整體概念;而“極值”是個局部概念.②、從個數(shù)上看,一個函數(shù)在給定的閉區(qū)間【a,b】上的最值是唯一的;而極值可能有多個,也可能只有一個,還可能一個都沒有;③、在極值點x0處的導數(shù)f′(x0)=0,而最值點不一定,最值有可能在極值點取得,也可能在端點處取得。第8頁,講稿共21頁,2023年5月2日,星期三
2.怎樣得到函數(shù)最值?
xX2oaX3bx1yy=f(x)《1、函數(shù)f(x)在閉區(qū)間[a,b]上的最值點在導數(shù)為零的點和區(qū)間的兩個端點處取得.
《2、只要把函數(shù)f(x)在閉區(qū)間[a,b]上的所有極值點連同端點的函數(shù)值進行比較,就可以求出函數(shù)的最大值與最小值。最大值最小值第9頁,講稿共21頁,2023年5月2日,星期三導數(shù)的應用之三、求函數(shù)最值.
(2)將y=f(x)的各極值與f(a)、f(b)(端點處)比較,其中最大的一個為最大值,最小的一個為最小值.求f(x)在閉區(qū)間[a,b]上的最值的步驟(1)求f(x)在區(qū)間(a,b)內(nèi)極值(極大值或極小值)第10頁,講稿共21頁,2023年5月2日,星期三例1、求函數(shù)f(x)=x3/3-4x+4在區(qū)間[0,3]內(nèi)的最大值和最小值
第11頁,講稿共21頁,2023年5月2日,星期三2、求函數(shù)f(x)=3x-x3
在區(qū)間[-3,3]
內(nèi)的最大值和最小值
練習1、變式將區(qū)間[0,3]改為[-3,4]
求函數(shù)的最大值和最小值
f(x)最大值為f(-2)=f(4)=28/3f(x)最小值為f(2)=-4/3f(x)最大值為f(1)=2f(x)最小值為f(-3)=-36第12頁,講稿共21頁,2023年5月2日,星期三※典型例題反思:本題是由函數(shù)的最值求參數(shù)的值:
基本方法最終落腳到比較極值與端點函數(shù)值大小上,從而解決問題.第13頁,講稿共21頁,2023年5月2日,星期三一.函數(shù)極值與最值區(qū)別與聯(lián)系二.利用導數(shù)求函數(shù)最值的方法課堂小結第14頁,講稿共21頁,2023年5月2日,星期三求f(x)在[a,b]上的最大值與最小值的步驟如下:①:求y=f(x)在(a,b)內(nèi)的極值(極大值與極小值);
②:將函數(shù)y=f(x)的各極值與f(a)、f(b)作比較,其中最大的一個為最大值,最小的一個為最小值.注意1)函數(shù)的最值是整體性的概念;2)函數(shù)的最大值(最小值)唯一;3)函數(shù)的最值可在端點取得.總結第15頁,講稿共21頁,2023年5月2日,星期三設函數(shù)
則
()
A.有最大值
B.有最小值
C.是增函數(shù)
D.是減函數(shù)A高考鏈接第16頁,講稿共21頁,2023年5月2日,星期三4、函數(shù)y=x3-3x2,在[-2,4]上的最大值為()(A)-4(B)0(C)16 (D)20C第17頁,講稿共21頁,2023年5月2日,星期三1.習題答案練習(第31頁)第18頁,講稿共21頁,2023年5月2日,星期三習題答案第19頁,講稿共21頁,2023年5月2日,星期三已知a為實數(shù),(Ⅰ)求導數(shù);(Ⅱ)若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆遼寧省部分重點中學協(xié)作體高三模擬考試語文試題(原卷版+解析版)
- 農(nóng)業(yè)生產(chǎn)責任及利潤共享協(xié)議
- 高端餐飲場所服務合作協(xié)議
- 浙江國企招聘2025臺州市國有資本運營集團有限公司招聘5人筆試參考題庫附帶答案詳解
- 2025湖南高速養(yǎng)護工程有限公司招聘勞務派遣員工55人(長期)筆試參考題庫附帶答案詳解
- 2025中國石油錦西石化公司春季高校畢業(yè)生招聘10人筆試參考題庫附帶答案詳解
- 委托建設橋梁協(xié)議書范本
- 學習合同協(xié)議書
- 2024年油氣儲層保護劑項目資金需求報告代可行性研究報告
- 紡織法律法規(guī)理解試題及答案
- 2025年貴州盤江精煤股份有限公司招聘筆試參考題庫含答案解析
- 2025年春新北師大版物理八年級下冊課件 第九章 機械和功 第一節(jié) 杠桿 第1課時 杠桿及其平衡條件
- GB/T 26718-2024城市軌道交通安全防范系統(tǒng)技術要求
- 救護車租賃合同模板
- 2024-2030年中國海外醫(yī)療中介服務行業(yè)運行現(xiàn)狀及投資潛力分析報告
- 餐飲業(yè)供應鏈管理與采購策略
- 幼兒園應急疏散演練
- 《家庭安全用電培訓》課件
- 《胸腔積液》課件
- 氣管插管患者的護理查房
- 醫(yī)院改造項目合同模板
評論
0/150
提交評論