海南省??谑协偵絽^(qū)重點中學2023年中考數(shù)學模擬預測題含解析_第1頁
海南省海口市瓊山區(qū)重點中學2023年中考數(shù)學模擬預測題含解析_第2頁
海南省??谑协偵絽^(qū)重點中學2023年中考數(shù)學模擬預測題含解析_第3頁
海南省??谑协偵絽^(qū)重點中學2023年中考數(shù)學模擬預測題含解析_第4頁
海南省??谑协偵絽^(qū)重點中學2023年中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.2.如圖所示的幾何體的主視圖是()A. B. C. D.3.平面直角坐標系內(nèi)一點關于原點對稱點的坐標是()A. B. C. D.4.某經(jīng)銷商銷售一批電話手表,第一個月以550元/塊的價格售出60塊,第二個月起降價,以500元/塊的價格將這批電話手表全部售出,銷售總額超過了5.5萬元.這批電話手表至少有()A.103塊 B.104塊 C.105塊 D.106塊5.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是56.我國古代數(shù)學著作《九章算術》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設有x人合買,這件物品y元,則根據(jù)題意列出的二元一次方程組為()A. B. C. D.7.如圖,在同一平面直角坐標系中,一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,則不等式y(tǒng)1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<28.如圖,是由幾個大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數(shù)字表示在該位置的小立方塊的個數(shù),則這個幾何體的主視圖是()A. B. C. D.9.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.10.小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數(shù)據(jù),下列說法錯誤的是().A.眾數(shù)是6噸 B.平均數(shù)是5噸 C.中位數(shù)是5噸 D.方差是二、填空題(共7小題,每小題3分,滿分21分)11.計算(5ab3)2的結(jié)果等于_____.12.如圖,直線y=x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2,再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,……按此作法進行去,點Bn的縱坐標為(n為正整數(shù)).13.的相反數(shù)是_____.14.下面是“作已知圓的內(nèi)接正方形”的尺規(guī)作圖過程.已知:⊙O.求作:⊙O的內(nèi)接正方形.作法:如圖,(1)作⊙O的直徑AB;(2)分別以點A,點B為圓心,大于12(3)作直線MN與⊙O交于C、D兩點,順次連接A、C、B、D.即四邊形ACBD為所求作的圓內(nèi)接正方形.請回答:該尺規(guī)作圖的依據(jù)是_____.15.計算:﹣22÷(﹣)=_____.16.如圖,PA,PB分別為的切線,切點分別為A、B,,則______.17.如圖,正△ABO的邊長為2,O為坐標原點,A在x軸上,B在第二象限,△ABO沿x軸正方向作無滑動的翻滾,經(jīng)第一次翻滾后得到△A1B1O,則翻滾2017次后AB中點M經(jīng)過的路徑長為______.三、解答題(共7小題,滿分69分)18.(10分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.請你根據(jù)以上信息解答下列問題:在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為,圓心角度數(shù)是度;補全條形統(tǒng)計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).19.(5分)如圖1,點和矩形的邊都在直線上,以點為圓心,以24為半徑作半圓,分別交直線于兩點.已知:,,矩形自右向左在直線上平移,當點到達點時,矩形停止運動.在平移過程中,設矩形對角線與半圓的交點為(點為半圓上遠離點的交點).如圖2,若與半圓相切,求的值;如圖3,當與半圓有兩個交點時,求線段的取值范圍;若線段的長為20,直接寫出此時的值.20.(8分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.21.(10分)某商場計劃購進、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進價、售價如表所示:()若商場預計進貨款為元,則這兩種臺燈各購進多少盞?()若商場規(guī)定型臺燈的進貨數(shù)量不超過型臺燈數(shù)量的倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?22.(10分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最小?若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.23.(12分)如圖,拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標;(2)當點P的縱坐標為2時,求點P的橫坐標;(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.24.(14分)先化簡,然后從﹣1,0,2中選一個合適的x的值,代入求值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.2、C【解析】

主視圖就是從正面看,看列數(shù)和每一列的個數(shù).【詳解】解:由圖可知,主視圖如下故選C.【點睛】考核知識點:組合體的三視圖.3、D【解析】

根據(jù)“平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),即關于原點的對稱點,橫縱坐標都變成相反數(shù)”解答.【詳解】解:根據(jù)關于原點對稱的點的坐標的特點,∴點A(-2,3)關于原點對稱的點的坐標是(2,-3),故選D.【點睛】本題主要考查點關于原點對稱的特征,解決本題的關鍵是要熟練掌握點關于原點對稱的特征.4、C【解析】試題分析:根據(jù)題意設出未知數(shù),列出相應的不等式,從而可以解答本題.設這批手表有x塊,550×60+(x﹣60)×500>55000解得,x>104∴這批電話手表至少有105塊考點:一元一次不等式的應用5、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項C正確;極差為:14﹣5=9,故選項D錯誤.故選D6、D【解析】

根據(jù)題意可以找出題目中的等量關系,列出相應的方程組,從而可以解答本題.【詳解】由題意可得:,故選D.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.7、C【解析】【分析】一次函數(shù)y1=kx+b落在與反比例函數(shù)y2=圖象上方的部分對應的自變量的取值范圍即為所求.【詳解】∵一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,∴不等式y(tǒng)1>y2的解集是﹣3<x<0或x>2,故選C.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結(jié)合是解題的關鍵.8、C【解析】

由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,據(jù)此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,所以其主視圖為:故選C.【點睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.9、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對稱-最短路線問題等知識點的應用,關鍵是找出PD+PE最小時P點的位置.10、C【解析】試題分析:根據(jù)眾數(shù)、平均數(shù)、中位數(shù)、方差:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數(shù)據(jù):3,4,5,6,6,6,中位數(shù)是5.5,故選C考點:1、方差;2、平均數(shù);3、中位數(shù);4、眾數(shù)二、填空題(共7小題,每小題3分,滿分21分)11、25a2b1.【解析】

代數(shù)式內(nèi)每項因式均平方即可.【詳解】解:原式=25a2b1.【點睛】本題考查了代數(shù)式的乘方.12、.【解析】尋找規(guī)律:由直線y=x的性質(zhì)可知,∵B2,B3,…,Bn是直線y=x上的點,∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且A2B2=OA2=OB1=OA1;A3B3=OA3=OB2=OA2=OA1;A4B4=OA4=OB3=OA3=OA1;…….又∵點A1坐標為(1,0),∴OA1=1.∴,即點Bn的縱坐標為.13、【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】的相反數(shù)是?.故答案為?.【點睛】本題考查的知識點是相反數(shù),解題的關鍵是熟練的掌握相反數(shù).14、相等的圓心角所對的弦相等,直徑所對的圓周角是直角.【解析】

根據(jù)圓內(nèi)接正四邊形的定義即可得到答案.【詳解】到線段兩端距離相等的點在這條線段的中垂線上;兩點確定一條直線;互相垂直的直徑將圓四等分,從而得到答案.【點睛】本題主要考查了圓內(nèi)接正四邊形的定義以及基本性質(zhì),解本題的要點在于熟知相關基本知識點.15、1【解析】解:原式==1.故答案為1.16、50°【解析】

由PA與PB都為圓O的切線,利用切線長定理得到,再利用等邊對等角得到一對角相等,由頂角的度數(shù)求出底角的度數(shù),再利用弦切角等于夾弧所對的圓周角,可得出,由的度數(shù)即可求出的度數(shù).【詳解】解:,PB分別為的切線,

,,

又,

,

則.

故答案為:【點睛】此題考查了切線長定理,切線的性質(zhì),以及等腰三角形的性質(zhì),熟練掌握定理及性質(zhì)是解本題的關鍵.17、(+896)π.【解析】

由圓弧的弧長公式及正△ABO翻滾的周期性可得出答案.【詳解】解:如圖作⊥x軸于E,易知OE=5,,,觀察圖象可知3三次一個循環(huán),一個循環(huán)點M的運動路徑為==,翻滾2017次后AB中點M經(jīng)過的路徑長為,故答案:【點睛】本題主要考查圓弧的弧長公式及三角形翻滾的周期性,熟悉并靈活運用各知識是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)35%,126;(2)見解析;(3)1344人【解析】

(1)由扇形統(tǒng)計圖其他的百分比求出“玩游戲”的百分比,乘以360即可得到結(jié)果;(2)求出3小時以上的人數(shù),補全條形統(tǒng)計圖即可;(3)由每周使用手機時間在2小時以上(不含2小時)的百分比乘以2100即可得到結(jié)果.【詳解】(1)根據(jù)題意得:1﹣(40%+18%+7%)=35%,則“玩游戲”對應的圓心角度數(shù)是360°×35%=126°,故答案為35%,126;(2)根據(jù)題意得:40÷40%=100(人),∴3小時以上的人數(shù)為100﹣(2+16+18+32)=32(人),補全圖形如下:;(3)根據(jù)題意得:2100×=1344(人),則每周使用手機時間在2小時以上(不含2小時)的人數(shù)約有1344人.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,準確識圖,從中找到必要的信息進行解題是關鍵.19、(1);(2);(3)或【解析】

(1)如圖2,連接OP,則DF與半圓相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用,求出,則;DF與半圓相切,由(1)知:PD=CD=18,即可求解;(3)設PG=GH=m,則:,求出,利用,即可求解.【詳解】(1)如圖,連接∵與半圓相切,∴,∴,在矩形中,,∵,根據(jù)勾股定理,得在和中,∴∴(2)如圖,當點與點重合時,過點作與點,則∵且,由(1)知:∴,∴,∴當與半圓相切時,由(1)知:,∴(3)設半圓與矩形對角線交于點P、H,過點O作OG⊥DF,則PG=GH,,則,設:PG=GH=m,則:,,整理得:25m2-640m+1216=0,解得:,.【點睛】本題考查的是圓的基本知識綜合運用,涉及到直線與圓的位置關系、解直角三角形等知識,其中(3),正確畫圖,作等腰三角形OPH的高OG,是本題的關鍵.20、(1)43;(2)S【解析】分析:(1)過點D作DH⊥AB,根據(jù)角平分線的性質(zhì)得到DH=DC根據(jù)正弦的定義列出方程,解方程即可;(2)根據(jù)三角形的面積公式計算.詳解:(1)過點D作DH⊥AB,垂足為點H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,則AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵sin∠BAC=HDAD=(2)S△ABD∵BD=2DE,∴S△ABD點睛:本題考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.21、(1)購進型臺燈盞,型臺燈25盞;(2)當商場購進型臺燈盞時,商場獲利最大,此時獲利為元.【解析】試題分析:(1)設商場應購進A型臺燈x盞,然后根據(jù)關系:商場預計進貨款為3500元,列方程可解決問題;(2)設商場銷售完這批臺燈可獲利y元,然后求出y與x的函數(shù)關系式,然后根據(jù)一次函數(shù)的性質(zhì)和自變量的取值范圍可確定獲利最多時的方案.試題解析:解:(1)設商場應購進A型臺燈x盞,則B型臺燈為(100﹣x)盞,根據(jù)題意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:應購進A型臺燈75盞,B型臺燈25盞;(2)設商場銷售完這批臺燈可獲利y元,則y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25時,y取得最大值,為﹣5×25+2000=1875(元)答:商場購進A型臺燈25盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.考點:1.一元一次方程的應用;2.一次函數(shù)的應用.22、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為

.【解析】

(1)根據(jù)勾股定理解答即可;(2)設AE=x,根據(jù)全等三角形的性質(zhì)和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質(zhì)解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質(zhì)知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據(jù)勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長為;(1)存在,如圖1,延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,則點P即為所求,此時有:PC=PG,∴PF+PC=GF.過點F作FH⊥BC,交BC于點H,則有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根據(jù)勾股定理,得:GF,即PF+PC的最小值為.【點睛】本題考查了四邊形的綜合題,涉及了折疊的性質(zhì)、勾股定理的應用、相似三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論