正態(tài)分布檢驗(yàn)的3大步驟及結(jié)果處理spss_第1頁
正態(tài)分布檢驗(yàn)的3大步驟及結(jié)果處理spss_第2頁
正態(tài)分布檢驗(yàn)的3大步驟及結(jié)果處理spss_第3頁
正態(tài)分布檢驗(yàn)的3大步驟及結(jié)果處理spss_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

.

Statistics–Spring2008

Lab#1–DataScreening

Normality

Below,Idescribefivestepsfordetermininganddealingwithnormality.However,thebottomlineisthatalmostnoonecheckstheirdatafornormality;insteadtheyassumenormality,andusethestatisticalteststhatarebaseduponassumptionsofnormalitythathavemorepower(abilitytofindsignificantresultsinthedata).

First,whatisnormality?Anormaldistributionisasymmetricbell-shapedcurvedefinedbytwothings:themean(average)andvariance(variability).

Second,whyisnormalityimportant?Thecentralideabehindstatisticalinferenceisthatassamplesizeincreases,distributionswillapproximatenormal.Moststatisticaltestsrelyupontheassumptionthatyourdatais“normal.Tests”thatrelyupontheassumptionornormalityarecalledparametrictests.Ifyourdataisnotnormal,thenyouwouldusestatisticalteststhatdonotrelyupontheassumptionofnormality,callnon-parametrictests.Non-parametrictestsarelesspowerfulthanparametrictests,whichmeansthenon-parametrictestshavelessabilitytodetectrealdifferencesorvariabilityinyourdata.Inotherwords,youwanttoconduct

parametrictestsbecauseyouwanttoincreaseyourchancesoffindingsignificantresults.

? Third,howdoyoudeterminewhetherdataare“Therenormalare”?threeinterrelatedapproachestodeterminenormality,andallthreeshouldbeconducted.

First,lookatahistogramwiththenormalcurvesuperimposed.Ahistogramprovidesusefulgraphical

representationofthedata.SPSScanalsosuperimposethetheoretical “normal”distributio

ofyourdatasothatyoucancompareyourdatatothenormalcurve.Toobtainahistogramwiththesuperimposednormalcurve:

1.SelectAnalyze-->DescriptiveStatistics-->Frequencies.

2.Moveallvariablesintothe “Variable(s) ”window.

ClickCharts“”,andclickHistogram,“withnormalcurve”.

ClickOK.

Outputbelowisfor“system1”.Notice-shapedthebellblacklinesuperimposedonthedistributionAll.samplesdeviatesomewhatfromnormal,sothequestionishowmuchdeviationfromtheblacklineindicates“non-normality”?Unfortunately,graphicalrepresentationslikehistogramprovideno-hardand-fastrules.Afteryouhaveviewedmany(many!)histograms,overtimeyouwillgetasenseforthenormalityofdata.Inmy

view,thehistogramfor “system1”showsafairlynormaldistribution.

.

.

Second,lookatthevaluesofSkewnessandKurtosis.Skewnessinvolvesthesymmetryofthedistribution.Skewnessthatisnormalinvolvesaperfectlysymmetricdistribution.Apositivelyskeweddistributionhasscoresclusteredtotheleft,withthetailextendingtotheright.Anegativelyskeweddistributionhasscoresclusteredtotheright,withthetailextendingtotheleft.Kurtosisinvolvesthepeakednessofthedistribution.Kurtosisthatisnormalinvolvesadistributionthatisbell-shapedandnottoopeakedorflat.Positivekurtosisisindicatedbyapeak.Negativekurtosisisindicatedbyaflatdistribution.DescriptivestatisticsaboutskewnessandkurtosiscanbefoundbyusingeithertheFrequencies,Descriptives,orExplorecommands.IliketousetheExplore“”commandbecauseitprovidesotherusefulinformationaboutnormality,so

1.

SelectAnalyze-->DescriptiveStatistics-->Explore.

2.

Moveallvariablesintothe

“Variable(s)”window.

ClickPlots“”,andunclickStem“-and-leaf”

ClickOK.

Descriptivesboxtellsyoudescriptivestatisticsaboutthevariable,includingthevalueofSkewnessandKurtosis,withaccompanyingstandarderrorforeach.BothSkewnessandKurtosisare0inanormal

distribution,sothefartherawayfrom0,themorenon-normalthedistribution.Thequestionis“howmuch”skeworkurtosisrenderthedatanon-normal?Thisisanarbitrarydetermination,andsometimesdifficulttointerpretusingthevaluesofSkewnessandKurtosis.Luckily,therearemoreobjectivetestsofnormality,describednext.

.

.

Third,thedescriptivestatisticsforSkewnessandKurtosisarenotasinformativeasestablishedtestsfornormalitythattakeintoaccountbothSkewnessandKurtosissimultaneously.TheKolmogorov-Smirnovtest(K-S)andShapiro-Wilk(S-W)testaredesignedtotestnormalitybycomparingyourdatatoanormal

distributionwiththesamemeanandstandarddeviationofyoursample:

1.

SelectAnalyze-->DescriptiveStatistics-->Explore.

2.

Moveallvariablesintothe

“Variable(s)”window.

ClickPlots“”,andunclickStem“-and-leaf”,andclickNormality“plotswithtests”.

ClickOK.

“TestofNormality”boxgivesthe-KSandS-Wtestresults.IfthetestisNOTsignificant,thenthedataarenormal,soanyvalueabove.05indicatesnormality.Ifthetestissignificant(lessthan.05),thenthedataarenon-normal.Inthiscase,bothtestsindicatethedataarenon-normal.However,onelimitationofthenormalitytestsisthatthelargerthesamplesize,themorelikelytogetsignificantresults.Thus,youmaygetsignificantresultswithonlyslightdeviationsfromnormality.Inthiscase,oursamplesizeislarge(n=327)sothesignificanceoftheK-SandS-Wtestsmayonlyindicateslightdeviationsfromnormality.Youneedtoeyeballyourdata(usinghistograms)todetermineforyourselfifthedatarisetothelevelofnon-normal.

“NormalQ-QPlot”providesagraphicalwaytodeterminethelevelofnormality.Theblacklineindicatesthevaluesyoursampleshouldadheretoifthedistributionwasnormal.Thedotsareyouractualdata.Ifthedotsfallexactlyontheblackline,thenyourdataarenormal.Iftheydeviatefromtheblackline,yourdataarenon-normal.Inthiscase,youcanseesubstantialdeviationfromthestraightblackline.

.

.

Fourth,ifyourdataarenon-normal,whatareyouroptionstodealwithnon-normality?Youhavefourbasicoptions.

Option1istoleaveyourdatanon-normal,andconducttheparametricteststhatrelyupontheassumptionsofnormality.Justbecauseyourdataarenon-normal,doesnotinstantlyinvalidatetheparametrictests.Normality(versusnon-normality)isamatterofdegrees,notastrictcut-offpoint.Slightdeviationsfromnormalitymayrendertheparametrictestsonlyslightlyinaccurate.Theissueisthedegreetowhichthedataarenon-normal.

Option2istoleaveyourdatanon-normal,andconductthenon-parametrictestsdesignedfornon-normaldata.

Option3istoconduct“robust”tests.Thereisagrowingbranchofstatisticscalledarejustaspowerfulasparametrictestsbutaccountfornon-normalityofthedata.

Option4istotransformthedata.Transformingyourdatainvolvingusingmathematicalformulasto

modifythedataintonormality.

?Fifth,howdoyoutransformyourdatainto

“normalThere”aredata?differenttypesoftransformationsbased

uponthetypeofnon-normality.Forexample,seehandout

“Figureonth8last.1page”ofthisdocumentthat

showssixtypesofnon-normality(e.g.,3positiveskewthataremoderate,substantial,andsevere;3negative

skewthataremoderate,substantial,andsevere).Figure8.1alsoshowsthetypeoftransformationforeach

typeof

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論