基于超限學(xué)習(xí)機(jī)的無(wú)設(shè)備定位方法研究_第1頁(yè)
基于超限學(xué)習(xí)機(jī)的無(wú)設(shè)備定位方法研究_第2頁(yè)
基于超限學(xué)習(xí)機(jī)的無(wú)設(shè)備定位方法研究_第3頁(yè)
基于超限學(xué)習(xí)機(jī)的無(wú)設(shè)備定位方法研究_第4頁(yè)
基于超限學(xué)習(xí)機(jī)的無(wú)設(shè)備定位方法研究_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于超限學(xué)習(xí)機(jī)的無(wú)設(shè)備定位方法研究基于超限學(xué)習(xí)機(jī)的無(wú)設(shè)備定位方法研究

摘要

無(wú)線定位技術(shù)因其方便快捷、無(wú)需硬件部署、精度高等優(yōu)點(diǎn)而受到廣泛關(guān)注。本文提出一種基于超限學(xué)習(xí)機(jī)的無(wú)設(shè)備定位方法,其中超限學(xué)習(xí)機(jī)被用于實(shí)現(xiàn)非線性函數(shù)映射,通過(guò)收集Wi-Fi信號(hào)強(qiáng)度和位置數(shù)據(jù)作為訓(xùn)練集,并以壓縮感知的方式實(shí)現(xiàn)極限降維,來(lái)進(jìn)行定位。為了進(jìn)一步提升精度,本文引入了局部權(quán)重貢獻(xiàn)方法來(lái)降低信號(hào)強(qiáng)度測(cè)量誤差對(duì)定位結(jié)果的影響。

本文還在室內(nèi)環(huán)境下進(jìn)行了一系列實(shí)驗(yàn),比較了所提出的方法與傳統(tǒng)的KNN定位算法和基于支持向量機(jī)的定位方法。實(shí)驗(yàn)結(jié)果表明,所提出的無(wú)設(shè)備定位方法具有較高的定位精度和更好的魯棒性。

關(guān)鍵詞:超限學(xué)習(xí)機(jī);無(wú)設(shè)備定位;Wi-Fi;壓縮感知;局部權(quán)重貢獻(xiàn)。

Abstract

Wirelesspositioningtechnologyhasattractedwidespreadattentionduetoitsconvenience,nohardwaredeployment,andhighaccuracy.Inthispaper,adevice-freepositioningmethodbasedonextremelearningmachine(ELM)isproposed,inwhichtheELMisusedtoachievenon-linearfunctionmapping.Wi-Fisignalstrengthandlocationdataarecollectedastrainingsets,andextremedimensionreductionisachievedbycompressivesensingtoperformpositioning.Inordertofurtherimprovetheaccuracy,thispaperintroducesthelocalweightcontributionmethodtoreducetheimpactofmeasurementerrorsonthepositioningresults.

Inaddition,aseriesofexperimentswerecarriedoutinanindoorenvironmenttocomparetheproposedmethodwiththetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethod.Theexperimentalresultsshowthattheproposeddevice-freepositioningmethodhashigherpositioningaccuracyandbetterrobustness.

Keywords:Extremelearningmachine(ELM);device-freepositioning;Wi-Fi;compressivesensing;localweightcontributionDevice-freepositioninghasbecomeanimportantresearchareaduetoitswiderangeofapplicationssuchassecurity,healthcare,andhomeautomation.Inthisstudy,anoveldevice-freepositioningalgorithmbasedonextremelearningmachine(ELM)andcompressivesensingwasproposed.Theproposedalgorithmutilizesthereceivedsignalstrength(RSS)ofWi-Fisignalstoestimatethepositionofatargetuserwithouttheneedforanyadditionaldevicesorsensors.

TheELMalgorithmwasutilizedtotrainalocalweightcontributionmatrix,whichisusedtodeterminethecontributionofeachsignalstrengthmeasurementtothepositioningresults.CompressivesensingwasusedtoreducethedimensionalityoftheRSSmatrix,thusreducingthecomputationalcomplexityandimprovingtheaccuracyofthealgorithm.

Aseriesofexperimentswereconductedinanindoorenvironmenttoevaluatetheproposeddevice-freepositioningmethod.TheexperimentalresultsshowedthattheproposedmethodoutperformedthetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethodintermsofaccuracyandrobustness.

Inconclusion,thisstudyproposesanoveldevice-freepositioningalgorithmbasedonELMandcompressivesensing,whichcanaccuratelyestimatethepositionofatargetuserusingonlyWi-Fisignals.Themethodhaspotentialforawiderangeofapplications,includinghomeautomation,healthcare,andsecurityTherearesomelimitationsandfuturedirectionsfortheproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensing.First,thealgorithmassumesthattheenvironmentisstaticduringthepositioningprocess.However,inreal-worldscenarios,theenvironmentmaychangedynamicallyovertime,whichcouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanfocusondevelopingdynamicalgorithmsthatcanadapttochangingenvironments.

Second,thealgorithmisbasedonWi-Fisignals,whichmaynotbeavailableinallenvironments.Insuchcases,alternativesignals,suchasBluetoothorRFID,couldbeused.Futureresearchcanexplorehowtheproposedalgorithmcouldbeadaptedtoworkwithothertypesofsignals.

Third,theproposedalgorithmrequiresatrainingphasetobuildthedictionarymatrix.Thisprocesscanbetime-consumingandmaynotbefeasibleinsomereal-worldscenarios.Therefore,futureresearchcanfocusondevelopingalgorithmsthatdonotrequireatrainingphase.

Fourth,theproposedalgorithmcurrentlyonlyworksforsingle-userscenarios.Inmulti-userenvironments,interferencebetweenuserscouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanexplorehowthealgorithmcouldbeadaptedtoworkinmulti-userscenarios.

Finally,whiletheproposedalgorithmoutperformedtraditionalpositioningalgorithmsintermsofaccuracyandrobustness,thereisstillroomforimprovement.Futureresearchcanfocusondevelopingmoreadvancedalgorithmsthatfurtherimprovetheaccuracyandefficiencyofdevice-freepositioningsystems.

Overall,theproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensinghasthepotentialtorevolutionizeindoorpositioningsystems.Withfurtherdevelopmentandresearch,itcouldenableawiderangeofapplicationsthatbenefitsocietyOnepotentialapplicationofdevice-freepositioningsystemsisinthefieldofhealthcare.Hospitalstaffneedtokeeptrackofpatientsandmedicalequipmentwithinthehospitalenvironment,andaccurateindoorpositioningcanhelptoincreaseefficiencyandreduceerrors.Forexample,adevice-freepositioningsystemcouldbeusedtotrackthemovementofahospitalbedandalertstaffwhenitreachesacertainlocation,suchastheoperatingroom.Itcouldalsobeusedtotrackthelocationofmedicalstaff,ensuringthattheyareinthecorrectareatoprovidetherequiredmedicalcare.

Anotherpotentialapplicationisinthefieldofsecurity.Traditionalsecuritysystemssuchasvideocamerasmaybeineffectiveincertainsituations,suchaswhentheintruderiswearingamaskorifthecamera'sviewisblocked.Adevice-freepositioningsystemcandetectthepresenceofahumanbeingeveniftheyarenotcarryinganyelectronicdevices,enablingsecuritypersonneltoidentifytheintruderandtakeappropriateaction.

Moreover,device-freepositioningsystemscanalsobeusedinenvironmentalmonitoring.Theycandetectandtrackthemovementofwildlifeinnaturalhabitatswithoutdisturbingthem,providingvaluableinformationtoresearchersandconservationists.Theycanalsobeusedtomonitorthemovementofpeopleindisasterzones,enablingfirstresponderstolocatesurvivorsandprovideassistancemoreefficiently.

Finally,device-freepositioningsystemscanbeusedinretailenvironments.Theycanprovidevaluableinsightsintocustomerbehavior,suchashowtheynavigatethestoreandwhichitemsaremostpopular.Thisinformationcanbeusedtoimprovestorelayoutandproductplacement,leadingtoincreasedsalesandcustomersatisfaction.

Inconclusion,device-freepositioningsystemshaveenormouspotentialtoenhance

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論