




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.在1-7月份,某種水果的每斤進(jìn)價(jià)與出售價(jià)的信息如圖所示,則出售該種水果每斤利潤最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份2.如圖所示,在矩形ABCD中,AB=6,BC=8,對角線AC、BD相交于點(diǎn)O,過點(diǎn)O作OE垂直AC交AD于點(diǎn)E,則DE的長是()A.5 B. C. D.3.如圖,平行四邊形ABCD的周長為12,∠A=60°,設(shè)邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關(guān)系的圖象大致是()A. B. C. D.4.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點(diǎn),且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°5.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1396.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°7.中國在第二十三屆冬奧會閉幕式上奉獻(xiàn)了《2022相約北京》的文藝表演,會后表演視頻在網(wǎng)絡(luò)上推出,即刻轉(zhuǎn)發(fā)量就超過810000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1048.已知關(guān)于x的不等式ax<b的解為x>-2,則下列關(guān)于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.9.如圖,已知直線PQ⊥MN于點(diǎn)O,點(diǎn)A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點(diǎn)C,使△ABC是等腰三角形,則這樣的C點(diǎn)有()A.3個(gè)B.4個(gè)C.7個(gè)D.8個(gè)10.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤二、填空題(共7小題,每小題3分,滿分21分)11.如圖,小紅作出了邊長為1的第1個(gè)正△A1B1C1,算出了正△A1B1C1的面積,然后分別取△A1B1C1三邊的中點(diǎn)A2,B2,C2,作出了第2個(gè)正△A2B2C2,算出了正△A2B2C2的面積,用同樣的方法,作出了第3個(gè)正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第8個(gè)正△A8B8C8的面積是_____.12.如圖,在△ABC中,P,Q分別為AB,AC的中點(diǎn).若S△APQ=1,則S四邊形PBCQ=__.13.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足為點(diǎn)D,以點(diǎn)D為圓心作⊙D,使得點(diǎn)A在⊙D外,且點(diǎn)B在⊙D內(nèi).設(shè)⊙D的半徑為r,那么r的取值范圍是_________.14.已知關(guān)于x的方程x2+mx+4=0有兩個(gè)相等的實(shí)數(shù)根,則實(shí)數(shù)m的值是______.15.某十字路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)你抬頭看信號燈時(shí),是綠燈的概率為____.16.如圖,在△ACB中,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),將△ACB繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),當(dāng)CB經(jīng)過點(diǎn)D時(shí)得到△A1CB1.若AC=6,BC=8,則DB1的長為________.17.已知函數(shù),當(dāng)時(shí),函數(shù)值y隨x的增大而增大.三、解答題(共7小題,滿分69分)18.(10分)如圖,在Rt△ABC中,,CD⊥AB于點(diǎn)D,BE⊥AB于點(diǎn)B,BE=CD,連接CE,DE.(1)求證:四邊形CDBE為矩形;(2)若AC=2,,求DE的長.19.(5分)計(jì)算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.20.(8分)解不等式組.21.(10分)如圖,已知AD是的中線,M是AD的中點(diǎn),過A點(diǎn)作,CM的延長線與AE相交于點(diǎn)E,與AB相交于點(diǎn)F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.22.(10分)如圖,正方形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)40°得到正方形ODEF,連接AF,求∠OFA的度數(shù)23.(12分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點(diǎn)G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.24.(14分)平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點(diǎn)C,與x軸正半軸相交于點(diǎn)A,OA=OC,與x軸的另一個(gè)交點(diǎn)為B,對稱軸是直線x=1,頂點(diǎn)為P.(1)求這條拋物線的表達(dá)式和頂點(diǎn)P的坐標(biāo);(2)拋物線的對稱軸與x軸相交于點(diǎn)M,求∠PMC的正切值;(3)點(diǎn)Q在y軸上,且△BCQ與△CMP相似,求點(diǎn)Q的坐標(biāo).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】
解:各月每斤利潤:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利潤最大,故選B.2、C【解析】
先利用勾股定理求出AC的長,然后證明△AEO∽△ACD,根據(jù)相似三角形對應(yīng)邊成比例列式求解即可.【詳解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,相似三角形對應(yīng)邊成比例的性質(zhì),根據(jù)相似三角形對應(yīng)邊成比例列出比例式是解題的關(guān)鍵.3、C【解析】
過點(diǎn)B作BE⊥AD于E,構(gòu)建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關(guān)系式,結(jié)合函數(shù)關(guān)系式找到對應(yīng)的圖像.【詳解】如圖,過點(diǎn)B作BE⊥AD于E.∵∠A=60°,設(shè)AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項(xiàng),C符合題意.故選C.【點(diǎn)睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關(guān)系式是解題的關(guān)鍵.4、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對應(yīng)相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點(diǎn)睛:熟練運(yùn)用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關(guān)鍵.5、B【解析】
由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點(diǎn)睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關(guān)鍵.6、D【解析】【分析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【點(diǎn)睛】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識是解題的關(guān)鍵.7、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】810000=8.1×1.
故選B.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.8、B【解析】∵關(guān)于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項(xiàng)中的不等式.故選B.9、D【解析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進(jìn)行分析.解:使△ABC是等腰三角形,當(dāng)AB當(dāng)?shù)讜r(shí),則作AB的垂直平分線,交PQ,MN的有兩點(diǎn),即有兩個(gè)三角形.當(dāng)讓AB當(dāng)腰時(shí),則以點(diǎn)A為圓心,AB為半徑畫圓交PQ,MN有三點(diǎn),所以有三個(gè).當(dāng)以點(diǎn)B為圓心,AB為半徑畫圓,交PQ,MN有三點(diǎn),所以有三個(gè).所以共8個(gè).故選D.點(diǎn)評:本題考查了等腰三角形的判定;解題的關(guān)鍵是要分情況而定,所以學(xué)生一定要思維嚴(yán)密,不可遺漏.10、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點(diǎn)定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補(bǔ)角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯(cuò)誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個(gè)三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點(diǎn)M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點(diǎn),
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯(cuò)誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點(diǎn)M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個(gè).故選:D【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強(qiáng),難度較大,仔細(xì)分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)相似三角形的性質(zhì),先求出正△A2B2C2,正△A3B3C3的面積,依此類推△AnBnCn的面積是,從而求出第8個(gè)正△A8B8C8的面積.【詳解】正△A1B1C1的面積是,而△A2B2C2與△A1B1C1相似,并且相似比是1:2,則面積的比是,則正△A2B2C2的面積是×;因而正△A3B3C3與正△A2B2C2的面積的比也是,面積是×()2;依此類推△AnBnCn與△An-1Bn-1Cn-1的面積的比是,第n個(gè)三角形的面積是()n-1.所以第8個(gè)正△A8B8C8的面積是×()7=.故答案為.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)及應(yīng)用,相似三角形面積的比等于相似比的平方,找出規(guī)律是關(guān)鍵.12、1【解析】
根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結(jié)果.【詳解】解:∵P,Q分別為AB,AC的中點(diǎn),∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì),三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.13、.【解析】
先根據(jù)勾股定理求出AB的長,進(jìn)而得出CD的長,由點(diǎn)與圓的位置關(guān)系即可得出結(jié)論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD?BD=CD2,設(shè)AD=x,BD=1-x.解得x=,∴點(diǎn)A在圓外,點(diǎn)B在圓內(nèi),r的范圍是,故答案為.【點(diǎn)睛】本題考查的是點(diǎn)與圓的位置關(guān)系,熟知點(diǎn)與圓的三種位置關(guān)系是解答此題的關(guān)鍵.14、±4【解析】分析:由方程有兩個(gè)相等的實(shí)數(shù)根,得到根的判別式等于0,列出關(guān)于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個(gè)相等的實(shí)數(shù)根,∴解得:故答案為點(diǎn)睛:考查一元二次方程根的判別式,當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根.當(dāng)時(shí),方程沒有實(shí)數(shù)根.15、【解析】
隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù),據(jù)此用綠燈亮的時(shí)間除以三種燈亮的總時(shí)間,求出抬頭看信號燈時(shí),是綠燈的概率為多少即可.【詳解】抬頭看信號燈時(shí),是綠燈的概率為.故答案為:.【點(diǎn)睛】此題主要考查了概率公式的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:(1)隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).(2)P(必然事件)=1.(3)P(不可能事件)=2.16、2【解析】
根據(jù)勾股定理可以得出AB的長度,從而得知CD的長度,再根據(jù)旋轉(zhuǎn)的性質(zhì)可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點(diǎn)D為AB的中點(diǎn),∴,∵將△ACB繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),當(dāng)CB經(jīng)過點(diǎn)D時(shí)得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點(diǎn)睛】本題考查的是勾股定理、直角三角形斜邊中點(diǎn)的性質(zhì)和旋轉(zhuǎn)的性質(zhì),能夠根據(jù)勾股定理求出AB的長是解題的關(guān)鍵.17、x≤﹣1.【解析】試題分析:∵=,a=﹣1<0,拋物線開口向下,對稱軸為直線x=﹣1,∴當(dāng)x≤﹣1時(shí),y隨x的增大而增大,故答案為x≤﹣1.考點(diǎn):二次函數(shù)的性質(zhì).三、解答題(共7小題,滿分69分)18、(1)見解析;(2)1【解析】
分析:(1)根據(jù)平行四邊形的判定與矩形的判定證明即可;(2)根據(jù)矩形的性質(zhì)和三角函數(shù)解答即可.詳解:(1)證明:∵CD⊥AB于點(diǎn)D,BE⊥AB于點(diǎn)B,∴.∴CD∥BE.又∵BE=CD,∴四邊形CDBE為平行四邊形.又∵,∴四邊形CDBE為矩形.(2)解:∵四邊形CDBE為矩形,∴DE=BC.∵在Rt△ABC中,,CD⊥AB,可得.∵,∴.∵在Rt△ABC中,,AC=2,,∴.∴DE=BC=1.點(diǎn)睛:本題考查了矩形的判定與性質(zhì),關(guān)鍵是根據(jù)平行四邊形的判定與矩形的判定解答.19、1.【解析】
直接利用絕對值的性質(zhì)以及特殊角的三角函數(shù)值分別化簡得出答案.【詳解】3tan31°+|2﹣|﹣(3﹣π)1﹣(﹣1)2118=3×+2﹣﹣1﹣1=+2﹣﹣1﹣1=1.【點(diǎn)睛】本題考查了絕對值的性質(zhì)以及特殊角的三角函數(shù)值,解題的關(guān)鍵是熟練的掌握絕對值的性質(zhì)以及特殊角的三角函數(shù)值.20、x<﹣1.【解析】分析:按照解一元一次不等式組的一般步驟解答即可.詳解:,由①得x≤1,由②得x<﹣1,∴原不等式組的解集是x<﹣1.點(diǎn)睛:“熟練掌握一元一次不等式組的解法”是正確解答本題的關(guān)鍵.21、(1)見解析;(2)見解析.【解析】
(1)先判定,可得,再根據(jù)是的中線,即可得到,依據(jù),即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據(jù),可得根據(jù)是的中線,可得,進(jìn)而得出四邊形是矩形.【詳解】證明:(1)是的中點(diǎn),,,,又,,,又是的中線,,又,四邊形是平行四邊形;(2),,∴,即,,又,,又是的中線,,又四邊形是平行四邊形,四邊形是矩形.【點(diǎn)睛】本題主要考查了平行四邊形、矩形的判定,等腰三角形的性質(zhì)以及相似三角形的性質(zhì)的運(yùn)用,解題時(shí)注意:對角線相等的平行四邊形是矩形.22、25°【解析】
先利用正方形的性質(zhì)得OA=OC,∠AOC=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OC=OF,∠COF=40°,則OA=OF,根據(jù)等腰三角形的性質(zhì)得∠OAF=∠OFA,然后根據(jù)三角形的內(nèi)角和定理計(jì)算∠OFA的度數(shù).【詳解】解:∵四邊形OABC為正方形,∴OA=OC,∠AOC=90°,∵正方形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=(180°-130°)=25°.故答案為25°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了正方形的性質(zhì).23、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】
(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大,推出當(dāng)B、C、D共線時(shí),BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東工商學(xué)院《服務(wù)禮儀理論教學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州水利水電職業(yè)技術(shù)學(xué)院《中醫(yī)護(hù)理技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶五一職業(yè)技術(shù)學(xué)院《交通運(yùn)輸安全2》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海中僑職業(yè)技術(shù)大學(xué)《建筑營造》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶建筑工程職業(yè)學(xué)院《跨媒介創(chuàng)意2》2023-2024學(xué)年第二學(xué)期期末試卷
- 北京工商大學(xué)嘉華學(xué)院《管理學(xué)原理B1》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆現(xiàn)代職業(yè)技術(shù)學(xué)院《教育學(xué)研究新進(jìn)展》2023-2024學(xué)年第二學(xué)期期末試卷
- 大連海洋大學(xué)《插畫基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海工商職業(yè)技術(shù)學(xué)院《陶瓷產(chǎn)品設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南交通工程學(xué)院《數(shù)字電路與數(shù)字邏輯》2023-2024學(xué)年第二學(xué)期期末試卷
- 地鐵站裝修報(bào)價(jià)
- 《寄冰》-完整版課件
- 內(nèi)科學(xué)-骨髓增生異常綜合征(MDS)
- 辦公室事故防范(典型案例分析)
- 地球的不同圈層英文版
- 八年級下冊英語七選五專項(xiàng)講練一
- 兩班倒排班表excel模板
- ISO31000風(fēng)險(xiǎn)管理標(biāo)準(zhǔn)中文版
- 《S7-1200-PLC-編程及應(yīng)用技術(shù)》試題試卷及答案2套
- 電土施表4-18混凝土結(jié)構(gòu)工程養(yǎng)護(hù)記錄.docx
- 醫(yī)療質(zhì)量與安全管理委員會組成與職責(zé)
評論
0/150
提交評論