



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山西省臨汾市洪洞職業(yè)中學高二數(shù)學文月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設a,b∈R,則“a+b>2”是“a>1且b>1”的(
)
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分又非必要條件參考答案:B2.已知橢圓和雙曲線有相同的焦點,是它們的共同焦距,且它們的離心率互為倒數(shù).是它們在第一象限的交點,當時,下列結論正確的是(
)A. B. C. D.參考答案:A3.在中,三邊成等差數(shù)列,,且的面積為,則的值是A.1+
B.2+
C.3+
D.參考答案:D略4.已知函數(shù),若函數(shù)的圖象上存在點,使得在點處的切線與的圖象也相切,則a的取值范圍是()A.(0,1] B. C. D.參考答案:B【分析】由兩條直線的公切線,表示出切點坐標,構造函數(shù),利用導函數(shù)求得極值點;根據(jù)極值點,求出兩側的單調(diào)性,再根據(jù)單調(diào)性求得的最大值?!驹斀狻康墓睬悬c為,設切線與的圖象相切與點由題意可得,解得所以令則令,解得當時,當時,,函數(shù)在上單調(diào)遞增當時,,函數(shù)在上單調(diào)遞減當t從右側趨近于0時,趨近于0當t趨近于時,趨近于0所以所以選B【點睛】本題考查了導數(shù)的綜合應用,利用導數(shù)的單調(diào)性求得值域,屬于難題。5.的展開式中的系數(shù)為(
)A.15
B.20
C.30
D.35參考答案:C6.若點P在拋物線上,則該點到點的距離與到拋物線焦點距離之和取得最小值時的坐標為(
)A.
B.
C.
D.參考答案:A7.不等式2lg(arcsinx)≤lg(arcsinx–2)的解集是(
)(A)(0,1]
(B)[–sin1,sin2]
(C)(0,sin2]
(D)參考答案:D8.中,的對邊分別是,若,則的形狀是(
)(A)銳角三角形
(B)直角三角形(C)鈍角三角形
(D)銳角或直角三角形參考答案:C9.如圖,在梯形ABCD中,AB∥CD∥EF,若AB=5,CD=2,EF=4,則梯形ABFE與梯形EFDC的面積比是()A.B.C.D.參考答案:D10.已知拋物線,過點的任意一條直線與拋物線交于A,B兩點,拋物線外一點,若∠∠,則t的值為(
)A. B.p C. D.-3參考答案:D【分析】設出點和直線,聯(lián)立方程得到關于的韋達定理,將轉化為斜率相反,將根與系數(shù)關系代入得到答案.【詳解】設,設直線AB:又恒成立即答案為D【點睛】本題考查了直線和拋物線的位置關系,定點問題,設直線方程時消去可以簡化運算,將角度關系轉化為斜率關系是解題的關鍵,計算量較大,屬于難題.二、填空題:本大題共7小題,每小題4分,共28分11.不等式的解集是
.參考答案:12.如圖,在△ABC中,AB=AC,∠C=720,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連結BD,若BC=,則AC=
參考答案:2
略13.若關于的不等式的解集,則的值為
參考答案:-314.若拋物線的焦點與橢圓的右焦點重合,則的值為
.參考答案:415.如圖1,一個正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實心裝飾塊,容器內(nèi)盛有升水時,水面恰好經(jīng)過正四棱錐的頂點P.如果將容器倒置,水面也恰好過點(圖2).有下列四個命題:A.正四棱錐的高等于正四棱柱高的一半;B.將容器側面水平放置時,水面也恰好過點;C.任意擺放該容器,當水面靜止時,水面都恰好經(jīng)過點;D.若往容器內(nèi)再注入升水,則容器恰好能裝滿.其中真命題的代號是:___________________(寫出所有真命題的代號).參考答案:B,D16.把圓的參數(shù)方程化成普通方程是______________________.參考答案:17.若直線被圓所截得的弦長為,則實數(shù)a的值為
.參考答案:0或4圓心到直線的距離為:,結合弦長公式有:,求解關于實數(shù)的方程可得:或.
三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知:a+b+c>0,ab+bc+ca>0,abc>0.
求證:a>0,b>0,c>0.參考答案:假設a,b,c不都是正數(shù),由abc>0可知,這三個數(shù)中必有兩個為負數(shù),一個為正數(shù),不妨設a<0,b<0,c>0,則由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b),ab+c(a+b)<-(a+b)(a+b)+ab,
即ab+bc+ca<-a2-ab-b2.∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,這與已知ab+bc+ca>0矛盾,假設不成立.因此a>0,b>0,c>0成立.略19.已知△ABC的三個頂點是A(3,0),B(4,5),C(0,7)(1)求BC邊上的高所在的直線方程(請用直線的一般方程表示解題結果)(2)求BC邊上的中線所在的直線方程(請用直線的一般方程表示解題結果)參考答案:【考點】直線的一般式方程.【分析】(1)可知直線BC的斜率,可得BC邊上的高所在直線的斜率,又已知直線過點A,把A點的坐標代入直線方程即可得答案.(2)可求出BC邊上的中點坐標,又已知直線過點A,利用兩點式可求出方程.【解答】解:(1)∵直線BC的斜率為=﹣,∴BC邊上的高所在直線的斜率為2.又∵直線過點A(3,0),∴所求直線的方程為y﹣0=2(x﹣3),即2x﹣y﹣6=0,(2)BC邊上的中點坐標為(2,6),又∵直線過點A(3,0),∴所求直線的方程為=即6x+y﹣18=0,20.設p:實數(shù)x滿足x2﹣4ax+3a2<0(a>0),q:x∈(2,3](1)若命題“若q,則p”為真,求實數(shù)a的取值范圍;(2)若p是¬q的充分條件,求實數(shù)a的取值范圍.參考答案:考點:必要條件、充分條件與充要條件的判斷;復合命題的真假.專題:簡易邏輯.分析:(1)若命題“若q,則p”為真,則q是p的充分條件,即可求實數(shù)a的取值范圍;(2)若p是¬q的充分條件,根據(jù)條件關系即可求實數(shù)a的取值范圍.解答: 解:(1)由x2﹣4ax+3a2<0(a>0),得(x﹣a)(x﹣3a)<0,則a<x<3a,即p:x∈(a,3a),若命題“若q,則p”為真,即q是p的充分條件,即(2,3]?(a,3a),即,即,解得1<a≤2.(2)¬q:x∈(﹣∞,2]∪(3,+∞),若p是¬q的充分條件,則(a,3a)?(﹣∞,2]∪(3,+∞),∵a>0,∴或a≥3,解得0<a≤或a≥3,即實數(shù)a的取值范圍是0<a≤或a≥3.點評:本題主要考查復合命題與簡單命題之間的關系,利用充分條件和必要條件的定義是解決本題的關鍵,21.(不等式選講,本題滿分12分)已知函數(shù).(1)解不等式;
(2)若,求證:參考答案:(Ⅰ)∵.
------1分因此只須解不等式.
----------2分當時,原不式等價于,即.------3分當時,原不式等價于,即.
-----4分當時,原不式等價于,即.
-------5分綜上,原不等式的解集為.
…6分(Ⅱ)∵
---------8分又0時,∴0時,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電針技能考試題及答案
- 疫情反彈面試題及答案
- 全球創(chuàng)新藥研發(fā)企業(yè)研發(fā)能力與競爭格局研究報告
- 死亡音樂測試題及答案
- 小學教師教育教學反思與情感教育的深度整合試題及答案
- 裝備制造業(yè)自主創(chuàng)新能力提升中的產(chǎn)業(yè)技術創(chuàng)新戰(zhàn)略聯(lián)盟構建與實施效果評估報告
- 2025南航招聘面試題庫及答案
- 2025南航招聘空姐面試問題及答案
- 2025護士面試題庫及答案
- 小學教師教育教學反思與家校互動的有效模式探討試題及答案
- 短視頻內(nèi)容課件
- 素養(yǎng)為本的教學評一體化教學設計核心理念
- 譯林版三年級上冊英語書單詞表
- 康復科并發(fā)癥二次殘疾
- (新版)拖拉機駕駛證科目一知識考試題庫500題(含答案)
- 2025年中考物理一輪復習:物理學與社會發(fā)展 專項練習
- DL∕T 526-2013 備用電源自動投入裝置技術條件
- 2024年北京大興區(qū)九年級初三一模英語試題和答案
- 食品生物化學 知到智慧樹網(wǎng)課答案
- 2024年江蘇國信新豐海上風力發(fā)電有限公司招聘筆試沖刺題(帶答案解析)
- 學術交流英語(學術寫作)智慧樹知到期末考試答案2024年
評論
0/150
提交評論