




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件2.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.3.已知集合,集合,則等于()A. B.C. D.4.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.5.半徑為2的球內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.6.設(shè)分別為雙曲線的左、右焦點(diǎn),過點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.7.在中,角所對(duì)的邊分別為,已知,則()A.或 B. C. D.或8.如圖,在平面四邊形ABCD中,若點(diǎn)E為邊CD上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.9.已知集合,集合,則().A. B.C. D.10.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.11.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,且,若,則()A.0 B.1 C.673 D.67412.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在平面直角坐標(biāo)系中,過點(diǎn)作傾斜角為的直線,已知直線與圓相交于兩點(diǎn),則弦的長(zhǎng)等于____________.14.在中,已知,,則A的值是______.15.已知雙曲線的左右焦點(diǎn)為,過作軸的垂線與相交于兩點(diǎn),與軸相交于.若,則雙曲線的離心率為_________.16.在的展開式中,項(xiàng)的系數(shù)是__________(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長(zhǎng)到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)曲線上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、到的距離都為3?若存在,求的值;若不存在,請(qǐng)說明理由.18.(12分)如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請(qǐng)寫出一個(gè)AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對(duì)于所有的AS(n,n),求l(A)的取值集合.19.(12分)已知定點(diǎn),,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。(1)求曲線的方程;(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說明理由。20.(12分)設(shè)都是正數(shù),且,.求證:.21.(12分)已知函數(shù),當(dāng)時(shí),有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.22.(10分)在平面直角坐標(biāo)系中,直線與拋物線:交于,兩點(diǎn),且當(dāng)時(shí),.(1)求的值;(2)設(shè)線段的中點(diǎn)為,拋物線在點(diǎn)處的切線與的準(zhǔn)線交于點(diǎn),證明:軸.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.2.C【解析】
根據(jù)在關(guān)于對(duì)稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.3.B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點(diǎn)睛】該題考查的是有關(guān)集合的運(yùn)算的問題,涉及到的知識(shí)點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.4.B【解析】
奇函數(shù)滿足定義域關(guān)于原點(diǎn)對(duì)稱且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對(duì)稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對(duì)稱,且滿足奇函數(shù),,在上,因?yàn)?,所以在上不是增函?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對(duì)稱,且,滿足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對(duì)稱,屬于簡(jiǎn)單題目.5.B【解析】
設(shè)正三棱柱上下底面的中心分別為,底面邊長(zhǎng)與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長(zhǎng)與高分別為,則,在中,,化為,,,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故選:B.【點(diǎn)睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.6.C【解析】
如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.7.D【解析】
根據(jù)正弦定理得到,化簡(jiǎn)得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.8.A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點(diǎn)為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時(shí),上式取最小值,選A.點(diǎn)睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時(shí)利用向量共線轉(zhuǎn)化為函數(shù)求最值。9.A【解析】
算出集合A、B及,再求補(bǔ)集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點(diǎn)睛】本題考查集合的交集、補(bǔ)集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.10.C【解析】
由圖象可知,可解得,利用三角恒等變換化簡(jiǎn)解析式可得,令,即可求得.【詳解】依題意,,即,解得;因?yàn)樗?,?dāng)時(shí),.故選:C.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡(jiǎn)中的應(yīng)用,難度一般.11.B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡(jiǎn)可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)?,故,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.12.C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.14.【解析】
根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點(diǎn)睛】本題考查正弦定理和二倍角的正弦公式,是基礎(chǔ)題.15.【解析】
由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點(diǎn)睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計(jì)算量.16.【解析】的展開式的通項(xiàng)為:.令,得.答案為:-40.點(diǎn)睛:求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第r+1項(xiàng),再由特定項(xiàng)的特點(diǎn)求出r值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第r+1項(xiàng),由特定項(xiàng)得出r值,最后求出其參數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),(2)存在,【解析】
(1)先求得曲線的普通方程,利用伸縮變換的知識(shí)求得曲線的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程.根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得直線的直角坐標(biāo)方程.(2)求得曲線的圓心和半徑,計(jì)算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標(biāo)伸長(zhǎng)到原來的2倍,得到曲線的直角坐標(biāo)方程為,其極坐標(biāo)方程為,直線的直角坐標(biāo)方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點(diǎn),,則,且點(diǎn)到直線的距離,∴,∴.【點(diǎn)睛】本小題主要考查坐標(biāo)變換,考查直線和圓的位置關(guān)系,考查極坐標(biāo)方程和直角坐標(biāo)方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.18.(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設(shè)存在,得出矛盾,從而證明結(jié)論;(Ⅲ)通過分析正確得出l(A)的表達(dá)式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因?yàn)?,,所以,?..,,,,...,這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1.令.一方面,由于這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個(gè)實(shí)數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個(gè)實(shí)數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個(gè)數(shù),由③知,上述2n個(gè)實(shí)數(shù)中,-1的個(gè)數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個(gè)數(shù)為2n-2k,所以,對(duì)數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點(diǎn)睛】本題為數(shù)列的創(chuàng)新應(yīng)用題,考查數(shù)學(xué)分析與思考能力及推理求解能力,解題關(guān)鍵是讀懂題意,根據(jù)引入的概念與性質(zhì)進(jìn)行推理求解,屬于較難題.19.(1);(2)存在定點(diǎn),見解析【解析】
(1)設(shè)動(dòng)點(diǎn),則,利用,求出曲線的方程.(2)由已知直線過點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達(dá)定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【詳解】解:(1)設(shè)動(dòng)點(diǎn),則,,,即,化簡(jiǎn)得:。由已知,故曲線的方程為。(2)由已知直線過點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當(dāng)時(shí),,;當(dāng)時(shí),,。所以存在定點(diǎn),使得直線與斜率之積為定值。【點(diǎn)睛】本題考查軌跡方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.20.證明見解析【解析】
利用比較法進(jìn)行證明:把代數(shù)式展開、作差、化簡(jiǎn)可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。21.(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】
(1)由題意得到關(guān)于實(shí)數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當(dāng)時(shí),有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時(shí),函數(shù)取得極小值,極小值為.當(dāng)時(shí),有極大值3.【點(diǎn)睛】本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 18093-2025航海日志
- 煙臺(tái)市重點(diǎn)中學(xué)2025屆高二下物理期末考試模擬試題含解析
- 鄭州市重點(diǎn)中學(xué)2025屆物理高二第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析
- 重慶市三峽名校聯(lián)盟高2025屆化學(xué)高二第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析
- 鹽城市高二學(xué)業(yè)水平模擬(一)化學(xué)試題
- 菜園土地承包經(jīng)營(yíng)權(quán)評(píng)估合同范本
- 車輛運(yùn)輸與貨物裝卸方案合同
- Elasticsearch八大經(jīng)典應(yīng)用
- 2025年小學(xué)校長(zhǎng)年終述職報(bào)告范文(19篇)
- 樂山建設(shè)工程施工合同協(xié)議(17篇)
- 2025四川中江振鑫產(chǎn)業(yè)集團(tuán)招聘14人筆試參考題庫附帶答案詳解
- 森林管護(hù)工技師考試試題及答案
- 樂曲演奏電路設(shè)計(jì)-正文
- 醫(yī)院行政考試試題及答案
- 2025屆湖北武漢市華中師大一附中高考英語押題試卷含答案
- 呼吸科護(hù)理進(jìn)修后回院匯報(bào)
- 家庭勞動(dòng)教育講座
- 某某工業(yè)新城彎道反光鏡項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告(總投資7040萬元)
- 保安勞務(wù)外包服務(wù)投標(biāo)方案投標(biāo)文件(技術(shù)方案)
- 正畸護(hù)士配臺(tái)流程
- 2025年湖北長(zhǎng)江出版?zhèn)髅郊瘓F(tuán)長(zhǎng)江出版?zhèn)髅焦菊衅腹P試參考題庫附帶答案詳解
評(píng)論
0/150
提交評(píng)論