




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
平面應(yīng)力問題平面應(yīng)力問題:設(shè)有很薄的等厚度板,只在板邊上受有平行于板面且不沿厚度變化的面力或約束,同時體力也平行于板面且不沿厚度變化。xyzh平面應(yīng)力問題平面應(yīng)力問題:設(shè)有很薄的等厚度板,只在平面應(yīng)變
問題平面應(yīng)變問題:設(shè)有很長的柱形體,它的橫截面不沿長度變化,在柱面上受有平行于橫截面而且不沿長度變化的面力或約束,同時體力也平行于橫截面且不沿長度變化。xyz平面應(yīng)變問題平面應(yīng)變問題:設(shè)有很長的柱形體,它的橫物理方程這里,E為彈性模量,G為剪切模量,μ泊松系數(shù),且有如下關(guān)系:物理方程這里,E為彈性模量,G為剪切模量,μ泊松系數(shù),平面應(yīng)力問題的物理方程注:平面應(yīng)力狀態(tài)中,垂直于平面方向上的正應(yīng)變不為零。平面應(yīng)力問題的物理方程注:平面應(yīng)力狀態(tài)中,垂直于平面方向上的平面應(yīng)變問題的物理方程注:平面應(yīng)變狀態(tài)中,垂直于平面方向上的正應(yīng)力不為零。平面應(yīng)變問題的物理方程注:平面應(yīng)變狀態(tài)中,垂直于平面方向上的平衡微分方程(1)oxyc平衡微分方程(1)oxyc平衡微分方程(2)X方向力平衡:c平衡微分方程(2)X方向力平衡:c再證剪應(yīng)力互等對c點力矩平衡:c再證剪應(yīng)力互等對c點力矩平衡:c幾何方程PABP’A’B’oxy幾何方程PABP’A’B’oxy剛體位移Poxy剛體位移Poxy平面問題小結(jié)平面問題的基本方程:三個物理方程三個幾何方程兩個平衡方程平面問題中的未知函數(shù):三個應(yīng)力分量三個應(yīng)變分量兩個位移分量平面問題小結(jié)平面問題的基本方程:三個物理方程平面問平面問題中一點的應(yīng)力狀態(tài)PABoxyx方向力平衡:y方向力平衡:求得:同理:平面問題中一點的應(yīng)力狀態(tài)PABoxyx方向力平衡:y方向力平主應(yīng)力及其方向PABoxy在應(yīng)力主面上,全應(yīng)力等于主應(yīng)力,因此:主應(yīng)力及其方向PABoxy在應(yīng)力主面上,全應(yīng)力等最大正應(yīng)力與最大剪應(yīng)力最大正應(yīng)力與最大剪應(yīng)力莫爾圓推導(dǎo)應(yīng)力狀態(tài)公式2ατσO.Mohr,德國人,1835-1918。莫爾圓推導(dǎo)應(yīng)力狀態(tài)公式2ατσO.Mohr,德國人,18邊界條件位移邊界條件:應(yīng)力邊界條件:混合條件:在位移約束面上:在應(yīng)力約束面上:位移約束與應(yīng)力約束的組合。設(shè)面法線與x軸正向夾角的余玄為l,與y軸正向夾角的余玄為m。邊界條件位移邊界條件:應(yīng)力邊界條件:混合條件:在位移約邊界條件舉例xyxyqp邊界條件舉例xyxyqp圣維南原理及其應(yīng)用圣維南(AdhémarJeanClaudeBarrédeSaint-Venant,1797~1886)原理:如果把物體的一小部分邊界上的面力,變換為分布不同但靜力等效的面力(主矢量相同,對于同一點的主矩也相同),那么近處的應(yīng)力分布將有顯著改變,但是遠處所受的影響可以忽略不計。FFFFF/2FF/2F/AFF/AF/AF圣維南原理及其應(yīng)用圣維南(AdhémarJeanClau圣維南原理推廣如果物體一小部分邊界上的面力是一個平衡力系(主矢量及主矩都等于零),那么,這個面力就只會使近處發(fā)生顯著的應(yīng)力,而遠處可以不計。圣維南原理推廣如果物體一小部分邊界上的面力是一個圣維南原理應(yīng)用xyh/2h/2嚴格邊界條件運用圣維南原理的邊界條件ll圣維南原理應(yīng)用xyh/2h/2嚴格邊界條件運用圣用位移法與應(yīng)力法求解平面問題位移法:以位移為基本未知函數(shù),從方程和邊界條件中消去應(yīng)力分量和形變分量,導(dǎo)出只含位移分量的方程和相應(yīng)的邊界條件,并由此解出位移分量,然后再求出形變分量和應(yīng)力分量。應(yīng)力法:以應(yīng)力分量為基本未知函數(shù),從方程和邊界條件中消去位移分量和形變分量,導(dǎo)出只含應(yīng)力分量的方程和相應(yīng)的邊界條件,并由此解出位移分量,然后再求出形變分量和位移分量。注:課堂上只推導(dǎo)平面應(yīng)力問題的求解方法,至于平面應(yīng)變問題,只需要在推導(dǎo)結(jié)果上稍作改變,即將結(jié)果中:換為換為用位移法與應(yīng)力法求解平面問題位移法:以位移為基本未知函數(shù),從按位移求解平面應(yīng)力問題(1)
—
用應(yīng)變表達應(yīng)力(物理方程)按位移求解平面應(yīng)力問題(1)
—用應(yīng)變表達應(yīng)力(物理方程)按位移求解平面應(yīng)力問題(2)
—
用位移表達應(yīng)變(幾何方程)按位移求解平面應(yīng)力問題(2)
—用位移表達應(yīng)變(幾何方程)按位移求解平面應(yīng)力問題(3)
—
平衡方程按位移求解平面應(yīng)力問題(3)
—平衡方程按位移求解平面應(yīng)力問題(4)
—
邊界條件按位移求解平面應(yīng)力問題(4)
—邊界條件按位移求解平面應(yīng)力問題(5)
—
小結(jié)按位移求解平面問題需要:1.位移分量滿足微分方程:2.邊界條件:按位移求解平面應(yīng)力問題(5)
—小結(jié)按位移求解平面問題需要按位移求解平面問題(5)
—
舉例y=hρgxy按位移求解平面問題(5)
—舉例y=hρgxy按位移求解平面問題(6)
—
舉例y=hρgxy按位移求解平面問題(6)
—舉例y=hρgxy按應(yīng)力求解平面應(yīng)力問題(1)
—
用位移表達應(yīng)變(幾何方程)形變協(xié)調(diào)方程或相容方程連續(xù)體的形變分量不是相互獨立的,它們之間必須滿足相容方程,才能保證真實的位移分量存在。按應(yīng)力求解平面應(yīng)力問題(1)
—用位移表達應(yīng)變(幾何方程)按應(yīng)力求解平面應(yīng)力問題(2)
—
相容方程的運用設(shè)有應(yīng)變分量:顯然其不滿足協(xié)調(diào)方程。按應(yīng)力求解平面應(yīng)力問題(2)
—相容方程的運用設(shè)有應(yīng)變分量按應(yīng)力求解平面應(yīng)力問題(3)
—
用應(yīng)力表達應(yīng)變(物理方程)用應(yīng)力表達應(yīng)變并代入形變協(xié)調(diào)方程:得到:按應(yīng)力求解平面應(yīng)力問題(3)
—用應(yīng)力表達應(yīng)變(物理方程)按應(yīng)力求解平面應(yīng)力問題(4)
—
平衡方程代入下式消去剪應(yīng)力:得到:按應(yīng)力求解平面應(yīng)力問題(4)
—平衡方程代入下式消去剪應(yīng)力按應(yīng)力求解平面應(yīng)力問題(5)
—
小結(jié)按應(yīng)力求解平面問題需要:3.應(yīng)力分量滿足邊界條件和或位移單值條件:2.應(yīng)力分量滿足形變協(xié)調(diào)方程:1.應(yīng)力分量滿足平衡微分方程:按應(yīng)力求解平面應(yīng)力問題(5)
—小結(jié)按應(yīng)力求解平面問題需要按應(yīng)力求解平面應(yīng)力問題(6)
—
例題y=hρgxy按應(yīng)力求解平面應(yīng)力問題(6)
—例題y=hρgxy常體力情況下的簡化(1)
—
應(yīng)力調(diào)和方程常體力拉普拉斯(Laplace,Pierre-Simon,1749~1827)方程,即調(diào)和方程。當(dāng)體力為常量時,在單連體的應(yīng)力邊界問題中,如果兩個彈性體的邊界形狀以及受力分布相同,那么它們平面內(nèi)的應(yīng)力分布相同。常體力情況下的簡化(1)
—應(yīng)力調(diào)和方程常體力拉普拉斯(L常體力情況下的簡化(2)
—
求解平衡方程平衡方程應(yīng)力調(diào)和方程所求的應(yīng)力函數(shù)必須滿足以下方程:其中式的解為式的通解加上式的特解:常體力情況下的簡化(2)
—求解平衡方程平衡方程應(yīng)力調(diào)和方常體力情況下的簡化(3)
—
平衡方程的特解特解一:特解二:特解三:常體力情況下的簡化(3)
—平衡方程的特解特解一:特解二:常體力情況下的簡化(4)
—
平衡方程的通解因此,由中第一式:由中第二式:剪應(yīng)力相等:則有:最后得到:艾里GeorgeAiry(1801-1892)應(yīng)力函數(shù)常體力情況下的簡化(4)
—平衡方程的通解因此,由常體力情況下的簡化(5)
—
平衡方程的解通解特解常體力情況下的簡化(5)
—平衡方程的解通解特解常體力情況下的簡化(6)
—
艾里應(yīng)力函數(shù)表示的相容方程應(yīng)力調(diào)和方程代入得到:簡寫為:常體力情況下的簡化(6)
—艾里應(yīng)力函數(shù)表示的相容方程應(yīng)力平面應(yīng)力問題平面應(yīng)力問題:設(shè)有很薄的等厚度板,只在板邊上受有平行于板面且不沿厚度變化的面力或約束,同時體力也平行于板面且不沿厚度變化。xyzh平面應(yīng)力問題平面應(yīng)力問題:設(shè)有很薄的等厚度板,只在平面應(yīng)變
問題平面應(yīng)變問題:設(shè)有很長的柱形體,它的橫截面不沿長度變化,在柱面上受有平行于橫截面而且不沿長度變化的面力或約束,同時體力也平行于橫截面且不沿長度變化。xyz平面應(yīng)變問題平面應(yīng)變問題:設(shè)有很長的柱形體,它的橫物理方程這里,E為彈性模量,G為剪切模量,μ泊松系數(shù),且有如下關(guān)系:物理方程這里,E為彈性模量,G為剪切模量,μ泊松系數(shù),平面應(yīng)力問題的物理方程注:平面應(yīng)力狀態(tài)中,垂直于平面方向上的正應(yīng)變不為零。平面應(yīng)力問題的物理方程注:平面應(yīng)力狀態(tài)中,垂直于平面方向上的平面應(yīng)變問題的物理方程注:平面應(yīng)變狀態(tài)中,垂直于平面方向上的正應(yīng)力不為零。平面應(yīng)變問題的物理方程注:平面應(yīng)變狀態(tài)中,垂直于平面方向上的平衡微分方程(1)oxyc平衡微分方程(1)oxyc平衡微分方程(2)X方向力平衡:c平衡微分方程(2)X方向力平衡:c再證剪應(yīng)力互等對c點力矩平衡:c再證剪應(yīng)力互等對c點力矩平衡:c幾何方程PABP’A’B’oxy幾何方程PABP’A’B’oxy剛體位移Poxy剛體位移Poxy平面問題小結(jié)平面問題的基本方程:三個物理方程三個幾何方程兩個平衡方程平面問題中的未知函數(shù):三個應(yīng)力分量三個應(yīng)變分量兩個位移分量平面問題小結(jié)平面問題的基本方程:三個物理方程平面問平面問題中一點的應(yīng)力狀態(tài)PABoxyx方向力平衡:y方向力平衡:求得:同理:平面問題中一點的應(yīng)力狀態(tài)PABoxyx方向力平衡:y方向力平主應(yīng)力及其方向PABoxy在應(yīng)力主面上,全應(yīng)力等于主應(yīng)力,因此:主應(yīng)力及其方向PABoxy在應(yīng)力主面上,全應(yīng)力等最大正應(yīng)力與最大剪應(yīng)力最大正應(yīng)力與最大剪應(yīng)力莫爾圓推導(dǎo)應(yīng)力狀態(tài)公式2ατσO.Mohr,德國人,1835-1918。莫爾圓推導(dǎo)應(yīng)力狀態(tài)公式2ατσO.Mohr,德國人,18邊界條件位移邊界條件:應(yīng)力邊界條件:混合條件:在位移約束面上:在應(yīng)力約束面上:位移約束與應(yīng)力約束的組合。設(shè)面法線與x軸正向夾角的余玄為l,與y軸正向夾角的余玄為m。邊界條件位移邊界條件:應(yīng)力邊界條件:混合條件:在位移約邊界條件舉例xyxyqp邊界條件舉例xyxyqp圣維南原理及其應(yīng)用圣維南(AdhémarJeanClaudeBarrédeSaint-Venant,1797~1886)原理:如果把物體的一小部分邊界上的面力,變換為分布不同但靜力等效的面力(主矢量相同,對于同一點的主矩也相同),那么近處的應(yīng)力分布將有顯著改變,但是遠處所受的影響可以忽略不計。FFFFF/2FF/2F/AFF/AF/AF圣維南原理及其應(yīng)用圣維南(AdhémarJeanClau圣維南原理推廣如果物體一小部分邊界上的面力是一個平衡力系(主矢量及主矩都等于零),那么,這個面力就只會使近處發(fā)生顯著的應(yīng)力,而遠處可以不計。圣維南原理推廣如果物體一小部分邊界上的面力是一個圣維南原理應(yīng)用xyh/2h/2嚴格邊界條件運用圣維南原理的邊界條件ll圣維南原理應(yīng)用xyh/2h/2嚴格邊界條件運用圣用位移法與應(yīng)力法求解平面問題位移法:以位移為基本未知函數(shù),從方程和邊界條件中消去應(yīng)力分量和形變分量,導(dǎo)出只含位移分量的方程和相應(yīng)的邊界條件,并由此解出位移分量,然后再求出形變分量和應(yīng)力分量。應(yīng)力法:以應(yīng)力分量為基本未知函數(shù),從方程和邊界條件中消去位移分量和形變分量,導(dǎo)出只含應(yīng)力分量的方程和相應(yīng)的邊界條件,并由此解出位移分量,然后再求出形變分量和位移分量。注:課堂上只推導(dǎo)平面應(yīng)力問題的求解方法,至于平面應(yīng)變問題,只需要在推導(dǎo)結(jié)果上稍作改變,即將結(jié)果中:換為換為用位移法與應(yīng)力法求解平面問題位移法:以位移為基本未知函數(shù),從按位移求解平面應(yīng)力問題(1)
—
用應(yīng)變表達應(yīng)力(物理方程)按位移求解平面應(yīng)力問題(1)
—用應(yīng)變表達應(yīng)力(物理方程)按位移求解平面應(yīng)力問題(2)
—
用位移表達應(yīng)變(幾何方程)按位移求解平面應(yīng)力問題(2)
—用位移表達應(yīng)變(幾何方程)按位移求解平面應(yīng)力問題(3)
—
平衡方程按位移求解平面應(yīng)力問題(3)
—平衡方程按位移求解平面應(yīng)力問題(4)
—
邊界條件按位移求解平面應(yīng)力問題(4)
—邊界條件按位移求解平面應(yīng)力問題(5)
—
小結(jié)按位移求解平面問題需要:1.位移分量滿足微分方程:2.邊界條件:按位移求解平面應(yīng)力問題(5)
—小結(jié)按位移求解平面問題需要按位移求解平面問題(5)
—
舉例y=hρgxy按位移求解平面問題(5)
—舉例y=hρgxy按位移求解平面問題(6)
—
舉例y=hρgxy按位移求解平面問題(6)
—舉例y=hρgxy按應(yīng)力求解平面應(yīng)力問題(1)
—
用位移表達應(yīng)變(幾何方程)形變協(xié)調(diào)方程或相容方程連續(xù)體的形變分量不是相互獨立的,它們之間必須滿足相容方程,才能保證真實的位移分量存在。按應(yīng)力求解平面應(yīng)力問題(1)
—用位移表達應(yīng)變(幾何方程)按應(yīng)力求解平面應(yīng)力問題(2)
—
相容方程的運用設(shè)有應(yīng)變分量:顯然其不滿足協(xié)調(diào)方程。按應(yīng)力求解平面應(yīng)力問題(2)
—相容方程的運用設(shè)有應(yīng)變分量按應(yīng)力求解平面應(yīng)力問題(3)
—
用應(yīng)力表達應(yīng)變(物理方程)用應(yīng)力表達應(yīng)變并代入形變協(xié)調(diào)方程:得到:按應(yīng)力求解平面應(yīng)力問題(3)
—用應(yīng)力表達應(yīng)變(物理方程)按應(yīng)力求解平面應(yīng)力問題(4)
—
平衡方程代入下式消去剪應(yīng)力:得到:按應(yīng)力求解平面應(yīng)力問題(4)
—平衡方程代入下式消去剪應(yīng)力按應(yīng)力求解平面應(yīng)力問題(5)
—
小結(jié)按應(yīng)力求解平面問題需要:3.應(yīng)力分量滿足邊界條件和或位移單值條件:2.應(yīng)力分量滿足形變協(xié)調(diào)方程:1.應(yīng)力分量滿足平衡微分方程:按應(yīng)力求解平面應(yīng)力問題(5)
—小結(jié)按應(yīng)力求解平面問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海寧廠房搬遷協(xié)議書范本
- 員工保密價格協(xié)議書范本
- 創(chuàng)新型企業(yè)財務(wù)總監(jiān)股權(quán)激勵聘用合同模板
- 車輛質(zhì)押與物流運輸一體化合同
- 海鮮餐廳品牌合作經(jīng)營授權(quán)合同
- 農(nóng)村集體菜地領(lǐng)種與社區(qū)服務(wù)共享合同
- 和同學(xué)的協(xié)議書范本
- 美食街餐飲加盟合作協(xié)議范本
- 礦山采礦權(quán)抵押股權(quán)融資合同范本
- 貨物運輸合同模板
- 2025年山東產(chǎn)權(quán)交易集團有限公司招聘筆試參考題庫含答案解析
- 《浙江市政預(yù)算定額(2018版)》(第七冊-第九冊)
- DB32-T 4878-2024 居住區(qū)供配電設(shè)施建設(shè)標準
- 2025年河北交通投資集團公司招聘筆試參考題庫含答案解析
- 藥品配送包裝及運輸方案
- 經(jīng)濟師考試知識產(chǎn)權(quán)高級經(jīng)濟實務(wù)新考綱題庫詳解(2025年)
- 新課標(水平三)體育與健康《籃球》大單元教學(xué)計劃及配套教案(18課時)
- 醫(yī)院培訓(xùn)課件:《失血性休克的急救護理》
- 2024年北京市中考生物真題卷及答案解析
- 華東理工大學(xué)《藥物設(shè)計與新藥發(fā)現(xiàn)-小分子藥物》2023-2024學(xué)年第一學(xué)期期末試卷
- 新質(zhì)生產(chǎn)力促進遼寧經(jīng)濟高質(zhì)量發(fā)展研究
評論
0/150
提交評論