2023屆紅河市重點中學(xué)高一數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
2023屆紅河市重點中學(xué)高一數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
2023屆紅河市重點中學(xué)高一數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
2023屆紅河市重點中學(xué)高一數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
2023屆紅河市重點中學(xué)高一數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,向量,則的最大值,最小值分別是()A.,0 B.4,C.16,0 D.4,02.設(shè),則的值為()A.0 B.1C.2 D.33.已知函數(shù),若,,,則,,的大小關(guān)系為A. B.C. D.4.已知指數(shù)函數(shù)的圖象過點,則()A. B.C.2 D.45.設(shè)奇函數(shù)在上單調(diào)遞增,且,則不等式的解集是()A B.或C. D.或6.函數(shù),則的最大值為()A. B.C.1 D.7.已知為角終邊上一點,則()A. B.1C.2 D.38.已知函數(shù)f(x)是偶函數(shù),且f(x)在上是增函數(shù),若,則不等式的解集為()A.{x|x>2} B.C.{或x>2} D.{或x>2}9.下列函數(shù)中,在上單調(diào)遞增的是()A. B.C. D.10.如圖的曲線就像橫放的葫蘆的軸截面的邊緣線,我們叫葫蘆曲線(也像湖面上高低起伏的小島在水中的倒影與自身形成的圖形,也可以形象地稱它為倒影曲線),它對應(yīng)的方程為(其中記為不超過的最大整數(shù)),且過點,若葫蘆曲線上一點到軸的距離為,則點到軸的距離為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若方程有4個不同的實數(shù)根,則的取值范圍是____12.已知向量,且,則_______.13.已知集合,,則集合中的元素個數(shù)為___________.14.在區(qū)間上隨機地取一個實數(shù),若實數(shù)滿足的概率為,則________.15.如圖,扇環(huán)ABCD中,弧,弧,,則扇環(huán)ABCD的面積__________16.用二分法求方程x2=2的正實根的近似解(精確度0.001)時,如果我們選取初始區(qū)間是[1.4,1.5],則要達到精確度至少需要計算的次數(shù)是______________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知二次函數(shù)的圖象與軸、軸共有三個交點.(1)求經(jīng)過這三個交點的圓的標(biāo)準(zhǔn)方程;(2)當(dāng)直線與圓相切時,求實數(shù)的值;(3)若直線與圓交于兩點,且,求此時實數(shù)的值.18.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱“局部中心函數(shù)”.(1)已知二次函數(shù)(),試判斷是否為“局部中心函數(shù)”,并說明理由;(2)若是定義域為上的“局部中心函數(shù)”,求實數(shù)的取值范圍.19.已知cosα=-35,且(1)求sinα(2)求sinα+6πcos20.某地區(qū)今年1月、2月、3月患某種傳染病的人數(shù)分別為52、54、58;為了預(yù)測以后各月的患病人數(shù),根據(jù)今年1月、2月、3月的數(shù)據(jù),甲選擇了模型fx=ax2+bx+c,乙選擇了模型y=p?qx+r,其中y為患病人數(shù),x為月份數(shù),a,b,(1)如果4月、5月、6月份的患病人數(shù)分別為66、82、115,你認(rèn)為誰選擇的模型較好?請說明理由;(2)至少要經(jīng)過多少個月患該傳染病的人數(shù)將會超過2000人?試用你認(rèn)為比較好的模型解決上述問題.(參考數(shù)據(jù):210=1024,21.袋中有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍色卡片兩張,標(biāo)號分別為1,2.(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率;(Ⅱ)現(xiàn)袋中再放入一張標(biāo)號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用向量的坐標(biāo)運算得到|2用θ的三角函數(shù)表示化簡求最值【詳解】解:向量,向量,則2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分別是:16,0;所以|2的最大值,最小值分別是4,0;故選:D【點睛】本題考查了向量的坐標(biāo)運算以及三角函數(shù)解析式的化簡;利用了兩角差的正弦公式以及正弦函數(shù)的有界性2、C【解析】根據(jù)分段函數(shù),結(jié)合指數(shù),對數(shù)運算計算即可得答案.【詳解】解:由于,所以.故選:C.【點睛】本題考查對數(shù)運算,指數(shù)運算,分段函數(shù)求函數(shù)值,考查運算能力,是基礎(chǔ)題.3、C【解析】根據(jù)函數(shù)解析式先判斷函數(shù)的單調(diào)性和奇偶性,然后根據(jù)指數(shù)和對數(shù)的運算法則進行化簡即可【詳解】∵f(x)=x3,∴函數(shù)f(x)是奇函數(shù),且函數(shù)為增函數(shù),a=﹣f(log3)=﹣f(﹣log310)=f(log310),則2<log39.1<log310,20.9<2,即20.9<log39.1<log310,則f(209)<f(log39.1)<f(log310),即c<b<a,故選C【點睛】本題主要考查函數(shù)值的大小的比較,根據(jù)函數(shù)解析式判斷函數(shù)的單調(diào)性和奇偶性是解決本題的關(guān)鍵4、C【解析】由指數(shù)函數(shù)過點代入求出,計算對數(shù)值即可.【詳解】因為指數(shù)函數(shù)的圖象過點,所以,即,所以,故選:C5、D【解析】由奇偶性可將所求不等式化為;利用奇偶性可判斷出單調(diào)性和,分別在和的情況下,利用單調(diào)性解得結(jié)果.【詳解】為奇函數(shù),;又在上單調(diào)遞增,,在上單調(diào)遞增,;,即;當(dāng)時,,;當(dāng)時,,;的解集為或.故選:D.【點睛】方法點睛:本題考查利用函數(shù)單調(diào)性和奇偶性求解函數(shù)不等式的問題,解決此類問題中,奇偶性和單調(diào)性的作用如下:(1)奇偶性:統(tǒng)一不等式兩側(cè)符號,同時根據(jù)奇偶函數(shù)的對稱性確定對稱區(qū)間的單調(diào)性;(2)單調(diào)性:將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量之間的大小關(guān)系.6、C【解析】,然后利用二次函數(shù)知識可得答案.【詳解】,令,則,當(dāng)時,,故選:C7、B【解析】先根據(jù)三角函數(shù)的定義求出,再利用齊次化將弦化切進行求解.【詳解】為角終邊上一點,故,故.故選:B8、C【解析】利用函數(shù)的奇偶性和單調(diào)性將不等式等價為,進而可求得結(jié)果.詳解】依題意,不等式,又在上是增函數(shù),所以,即或,解得或.故選:C.9、B【解析】利用基本初等函數(shù)的單調(diào)性可得出合適的選項.【詳解】函數(shù)、、在上均為減函數(shù),函數(shù)在上為增函數(shù).故選:B.10、C【解析】先根據(jù)點在曲線上求出,然后根據(jù)即可求得的值【詳解】點在曲線上,可得:化簡可得:可得:()解得:()若葫蘆曲線上一點到軸的距離為,則等價于則有:可得:故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先畫出函數(shù)的圖象,把方程有4個不同的實數(shù)根轉(zhuǎn)化為函數(shù)的圖象與有四個不同的交點,結(jié)合對數(shù)函數(shù)和二次函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),要先畫出函數(shù)的圖象,如圖所示,又由方程有4個不同的實數(shù)根,即函數(shù)的圖象與有四個不同的交點,可得,且,則=,因為,則,所以.故答案為.【點睛】本題主要考查了函數(shù)與方程的綜合應(yīng)用,其中解答中把方程有4個不同的實數(shù)根,轉(zhuǎn)化為兩個函數(shù)的有四個交點,結(jié)合對數(shù)函數(shù)與二次函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于中檔試題.12、2【解析】由題意可得解得.【名師點睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的運算:.13、【解析】解不等式確定集合,解方程確定集合,再由交集定義求得交集后可得結(jié)論【詳解】由題意,,∴,只有1個元素故答案為:114、1【解析】利用幾何概型中的長度比即可求解.【詳解】實數(shù)滿足,解得,,解得,故答案為:1【點睛】本題考查了幾何概率的應(yīng)用,屬于基礎(chǔ)題.15、3【解析】根據(jù)弧長公式求出,,再由根據(jù)扇形的面積公式求解即可.【詳解】設(shè),因為弧,弧,,所以,,所以,,又扇形的面積為,扇形的面積為,所以扇環(huán)ABCD的面積故答案為:316、7【解析】設(shè)至少需要計算n次,則n滿足,即,由于,故要達到精確度要求至少需要計算7次三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或;(3)【解析】(1)先求出二次函數(shù)的圖象與坐標(biāo)軸的三個交點的坐標(biāo),然后根據(jù)待定系數(shù)法求解可得圓的標(biāo)準(zhǔn)方程;(2)根據(jù)圓心到直線的距離等于半徑可得實數(shù)的值;(3)結(jié)合弦長公式可得所求實數(shù)的值【詳解】(1)在中,令,可得;令,可得或所以三個交點分別為,,,設(shè)圓的方程為,將三個點的坐標(biāo)代入上式得,解得,所以圓的方程為,化為標(biāo)準(zhǔn)方程為:(2)由(1)知圓心,因為直線與圓相切,所以,解得或,所以實數(shù)的值為或(3)由題意得圓心到直線的距離,又,所以,則,解得所以實數(shù)的值為或【點睛】(1)求圓的方程時常用的方法有兩種:一是幾何法,即求出圓的圓心和半徑即可得到圓的方程;二是用待定系數(shù)法,即通過代數(shù)法求出圓的方程(2)解決圓的有關(guān)問題時,要注意圓的幾何性質(zhì)的應(yīng)用,合理利用圓的有關(guān)性質(zhì)進行求解,可以簡化運算、提高解題的效率18、(1)為“局部中心函數(shù)”,理由詳見解題過程;(2)【解析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域為上的“局部中心函數(shù)”可轉(zhuǎn)化為方程有解,再利用整體思路得出結(jié)果.【詳解】解:(1)由題意,(),所以,,當(dāng)時,解得:,由于,所以,所以為“局部中心函數(shù)”.(2)因為是定義域為上的“局部中心函數(shù)”,所以方程有解,即在上有解,整理得:,令,,故題意轉(zhuǎn)化為在上有解,設(shè)函數(shù),當(dāng)時,在上有解,即,解得:;當(dāng)時,則需要滿足才能使在上有解,解得:,綜上:.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì)、指數(shù)函數(shù)的圖象與性質(zhì),考查了整體換元的思想方法,還考查了學(xué)生理解新定義的能力.19、(1)4(2)-【解析】(1)根據(jù)三角函數(shù)的同角關(guān)系求得sinα=±(2)利用誘導(dǎo)公式將原式化簡即可得出結(jié)果.【小問1詳解】因為cosα=-35因為α是第二象限角,所以sinα=【小問2詳解】sinα+6π20、(1)應(yīng)將y=2(2)至少經(jīng)過11個月患該傳染病的人數(shù)將會超過2000人【解析】(1)分別將x=1,2,3代入兩個解析式,求得a,b,c,p,q,r,求得解析式,并分別檢驗x=4,5,6時函數(shù)值與真實值的誤差,分析即可得答案.(2)令2x+50>2000,可求得【小問1詳解】由題意,把x=1,2,3代入fx得:解得a=1,b=-1,c=52,所以fx所以f4=42-4+52=64則f4-66=2,f把x=1,2,3代入y=gx=p?解得p=1,q=2,r=50,所以gx所以g4=24+50=66則g4-66=0,因為g4,g5,g6【小問2詳解】令2x+50>2000由于210=1024<1950<2048=2所以至少經(jīng)過11個月患該傳染病的人數(shù)將會超過2000人21、(I).(II)【解析】解:(I)從五張卡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論