


版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數(shù)學模擬測試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.2.已知集合,則集合()A. B. C. D.3.函數(shù)的大致圖像為()A. B.C. D.4.的展開式中有理項有()A.項 B.項 C.項 D.項5.要排出高三某班一天中,語文、數(shù)學、英語各節(jié),自習課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.6.設是定義域為的偶函數(shù),且在單調(diào)遞增,,則()A. B.C. D.7.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.8.復數(shù)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.10.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.11.若函數(shù)()的圖象過點,則()A.函數(shù)的值域是 B.點是的一個對稱中心C.函數(shù)的最小正周期是 D.直線是的一條對稱軸12.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,()⊥(>1),若角A的最大值為,則實數(shù)的值是_______.14.在平面直角坐標系xOy中,己知直線與函數(shù)的圖象在y軸右側(cè)的公共點從左到右依次為,,…,若點的橫坐標為1,則點的橫坐標為________.15.已知函數(shù)恰好有3個不同的零點,則實數(shù)的取值范圍為____16.已知,,且,若恒成立,則實數(shù)的取值范圍是____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設都是正數(shù),且,.求證:.18.(12分)已知橢圓C的離心率為且經(jīng)過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以OA、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.19.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點處的切線方程;(2)若函數(shù)有兩個極值點,,且,求證:.20.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點,且.①求實數(shù)的取值范圍;②求證:.21.(12分)設,函數(shù).(1)當時,求在內(nèi)的極值;(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.22.(10分)為貫徹十九大報告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗田中各隨機抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】
由于中正項與負項交替出現(xiàn),根據(jù)可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.2、D【答案解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【題目詳解】因,所以,故,又,,則,故集合.故選:D.【答案點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.3、D【答案解析】
通過取特殊值逐項排除即可得到正確結(jié)果.【題目詳解】函數(shù)的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【答案點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.4、B【答案解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【題目詳解】,,當,,,時,為有理項,共項.故選:B.【答案點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.5、C【答案解析】
根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學都安排在上午;②語文和數(shù)學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案.【題目詳解】根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學都一個安排在上午,一個安排在下午.語文和數(shù)學一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【答案點睛】本題考查排列、組合的應用,涉及分類計數(shù)原理的應用,屬于中等題.6、C【答案解析】
根據(jù)偶函數(shù)的性質(zhì),比較即可.【題目詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調(diào)遞增,所以故選:C【答案點睛】本題考查對數(shù)的運算及偶函數(shù)的性質(zhì),是基礎題.7、A【答案解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.8、A【答案解析】
試題分析:由題意可得:.共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關系9、A【答案解析】
令,進而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【題目詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【答案點睛】本題主要考查了導數(shù)在研究函數(shù)最值中的應用,考查了轉(zhuǎn)化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關鍵,屬于中檔題.10、C【答案解析】
取中點,連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【題目詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.【答案點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.11、A【答案解析】
根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【題目詳解】由函數(shù)()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【答案點睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎題.12、D【答案解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.二、填空題:本題共4小題,每小題5分,共20分。13、1【答案解析】
把向量進行轉(zhuǎn)化,用表示,利用基本不等式可求實數(shù)的值.【題目詳解】,解得=1.故答案為:1.【答案點睛】本題主要考查平面向量的數(shù)量積應用,綜合了基本不等式,側(cè)重考查數(shù)學運算的核心素養(yǎng).14、1【答案解析】
當時,得,或,依題意可得,可求得,繼而可得答案.【題目詳解】因為點的橫坐標為1,即當時,,所以或,又直線與函數(shù)的圖象在軸右側(cè)的公共點從左到右依次為,,所以,故,所以函數(shù)的關系式為.當時,(1),即點的橫坐標為1,為二函數(shù)的圖象的第二個公共點.故答案為:1.【答案點睛】本題考查三角函數(shù)關系式的恒等變換、正弦型函數(shù)的性質(zhì)的應用,主要考查學生的運算能力及思維能力,屬于中檔題.15、【答案解析】
恰好有3個不同的零點恰有三個根,然后轉(zhuǎn)化成求函數(shù)值域即可.【題目詳解】解:恰好有3個不同的零點恰有三個根,令,,在遞增;,遞減,遞增,時,在有一個零點,在有2個零點;故答案為:.【答案點睛】已知函數(shù)的零點個數(shù)求參數(shù)的取值范圍是重點也是難點,這類題一般用分離參數(shù)的方法,中檔題.16、(-4,2)【答案解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、證明見解析【答案解析】
利用比較法進行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【題目詳解】證明:因為,,所以,∴成立,又都是正數(shù),∴,①同理,∴.【答案點睛】本題考查利用比較法證明不等式;考查學生的邏輯推理能力和運算求解能力;把差變形為因式乘積的形式是證明本題的關鍵;屬于中檔題。18、(1)(2)【答案解析】
(1)根據(jù)橢圓的離心率、橢圓上點的坐標以及列方程,由此求得,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點的坐標,將的坐標代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【題目詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設直線的斜率為,則直線的方程為,設,由消去得,所以,由已知得,所以,由于點都在橢圓上,所以,展開有,又,所以,經(jīng)檢驗滿足,故直線的方程為.【答案點睛】本小題主要考查根據(jù)橢圓的離心率和橢圓上一點的坐標求橢圓方程,考查直線和橢圓的位置關系,考查運算求解能力,屬于中檔題.19、(1)(2)見解析【答案解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,,進而再求導可得,結(jié)合函數(shù)的單調(diào)性可得,從而得證.試題解析:(1)由已知條件,,當時,,,當時,,所以所求切線方程為(2)由已知條件可得有兩個相異實根,,令,則,1)若,則,單調(diào)遞增,不可能有兩根;2)若,令得,可知在上單調(diào)遞增,在上單調(diào)遞減,令解得,由有,由有,從而時函數(shù)有兩個極值點,當變化時,,的變化情況如下表單調(diào)遞減單調(diào)遞增單調(diào)遞減因為,所以,在區(qū)間上單調(diào)遞增,.另解:由已知可得,則,令,則,可知函數(shù)在單調(diào)遞增,在單調(diào)遞減,若有兩個根,則可得,當時,,所以在區(qū)間上單調(diào)遞增,所以.20、(1);(2)①;②詳見解析.【答案解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導并表示,代入上述方程即可解得答案;(2)①已知要求等價于在上有兩個根,且,即在上有兩個不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時單調(diào)性推及極值說明即可;②由①可知,是方程的兩個不等的實根,由韋達定理可表達根與系數(shù)的關系,進而用含的式子表示,令,對求導分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進而求最值證明不等式成立.【題目詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實數(shù)的值為.(2)①因為函數(shù)在定義域上有兩個極值點,且,所以在上有兩個根,且,即在上有兩個不相等的根.所以解得.當時,若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個極值點,且.所以,實數(shù)的取值范圍是.②由①可知,是方程的兩個不等的實根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當時,,在上單調(diào)遞減;當時,,在上單調(diào)遞增,所以當時,,又,,所以,即,故得證.【答案點睛】本題考查導數(shù)的幾何意義、兩直線的位置關系、由極值點個數(shù)求參數(shù)范圍問題,還考查了利用導數(shù)證明不等式成立,屬于難題.21、(1)極大值是,無極小值;(2)【答案解析】
(1)當時,可求得,令,利用導數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【題目詳解】(1)當時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備監(jiān)理機構(gòu)管理制度
- 設備設施處置管理制度
- 設計公司保密管理制度
- 設計外包單位管理制度
- 評估機構(gòu)選聘管理制度
- 診所患者流量管理制度
- 診所飲水設備管理制度
- 誠信公司經(jīng)營管理制度
- 財務部門目標管理制度
- 財政補助資金管理制度
- Unit11Floraistall(課件)Lesson1新概念英語青少版StarterA教學課件
- 銀行間本幣交易員資格考試題庫(濃縮500題)
- 6S檢查表(工廠用)
- 人教版小學英語3-6年級單詞(帶音標完整版)
- 帶式輸送機選型設計
- MES系統(tǒng)操作手冊完整版
- 固定污染源廢水在線監(jiān)測系統(tǒng)講義
- 2023年全國青少年航天知識大賽題庫
- 進出口貿(mào)易實務教程第七版課件
- 機電設備運輸裝卸方案
- 一號小米降噪耳機測試報告
評論
0/150
提交評論