2022年內(nèi)蒙古包鋼一中數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第1頁
2022年內(nèi)蒙古包鋼一中數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第2頁
2022年內(nèi)蒙古包鋼一中數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第3頁
2022年內(nèi)蒙古包鋼一中數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第4頁
2022年內(nèi)蒙古包鋼一中數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,用一邊長為的正方形硬紙,按各邊中點(diǎn)垂直折起四個(gè)小三角形,做成一個(gè)蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.2.偶函數(shù)關(guān)于點(diǎn)對稱,當(dāng)時(shí),,求()A. B. C. D.3.已知集合,,則等于()A. B. C. D.4.已知是第二象限的角,,則()A. B. C. D.5.為了進(jìn)一步提升駕駛?cè)私煌ò踩拿饕庾R,駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個(gè)不同的路口站崗,每個(gè)路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種6.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.847.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)的模為()A. B.4 C.2 D.8.已知邊長為4的菱形,,為的中點(diǎn),為平面內(nèi)一點(diǎn),若,則()A.16 B.14 C.12 D.89.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.10.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.11.設(shè)i為數(shù)單位,為z的共軛復(fù)數(shù),若,則()A. B. C. D.12.已知拋物線的焦點(diǎn)為,若拋物線上的點(diǎn)關(guān)于直線對稱的點(diǎn)恰好在射線上,則直線被截得的弦長為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和公式為,則數(shù)列的通項(xiàng)公式為___.14.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.15.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.16.已知向量滿足,且,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)P是圓上的動點(diǎn),P點(diǎn)在x軸上的射影是D,點(diǎn)M滿足.(1)求動點(diǎn)M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點(diǎn)的直線l與動點(diǎn)M的軌跡C交于不同的兩點(diǎn)A,B,求以O(shè)A,OB為鄰邊的平行四邊形OAEB的頂點(diǎn)E的軌跡方程.18.(12分)已知橢圓過點(diǎn),設(shè)橢圓的上頂點(diǎn)為,右頂點(diǎn)和右焦點(diǎn)分別為,,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線交橢圓于,兩點(diǎn),設(shè)直線與直線的斜率分別為,,若,試判斷直線是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.19.(12分)已知函數(shù)(),是的導(dǎo)數(shù).(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.20.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.(1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;(2)若,且,求實(shí)數(shù)的值;(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.21.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點(diǎn)N到平面CDM的距離.22.(10分)某機(jī)構(gòu)組織的家庭教育活動上有一個(gè)游戲,每次由一個(gè)小孩與其一位家長參與,測試家長對小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個(gè)數(shù)字的一種排列.定義隨機(jī)變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長對小孩的飲食習(xí)慣完全不了解.(?。┣笏麄冊谝惠営螒蛑校瑢λ姆N食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細(xì)計(jì)算過程);(2)若有一組小孩和家長進(jìn)行來三輪游戲,三輪的結(jié)果都滿足X<4,請判斷這位家長對小孩飲食習(xí)慣是否了解,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】因?yàn)榈俺驳牡酌媸沁呴L為的正方形,所以過四個(gè)頂點(diǎn)截雞蛋所得的截面圓的直徑為,又因?yàn)殡u蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點(diǎn)距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點(diǎn)睛:本題主要考查折疊問題,考查球體有關(guān)的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問題時(shí),可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點(diǎn)的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.2、D【解析】

推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時(shí),,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.3、B【解析】

解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.4、D【解析】

利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;屬于中檔題.5、C【解析】

先將甲、乙兩人看作一個(gè)整體,當(dāng)作一個(gè)元素,再將這四個(gè)元素分成3個(gè)部分,每一個(gè)部分至少一個(gè),再將這3部分分配到3個(gè)不同的路口,根據(jù)分步計(jì)數(shù)原理可得選項(xiàng).【詳解】把甲、乙兩名交警看作一個(gè)整體,個(gè)人變成了4個(gè)元素,再把這4個(gè)元素分成3部分,每部分至少有1個(gè)人,共有種方法,再把這3部分分到3個(gè)不同的路口,有種方法,由分步計(jì)數(shù)原理,共有種方案。故選:C.【點(diǎn)睛】本題主要考查排列與組合,常常運(yùn)用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.6、D【解析】

利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、D【解析】

由復(fù)數(shù)的綜合運(yùn)算求出,再寫出其共軛復(fù)數(shù),然后由模的定義計(jì)算模.【詳解】,.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,考查共軛復(fù)數(shù)與模的定義,屬于基礎(chǔ)題.8、B【解析】

取中點(diǎn),可確定;根據(jù)平面向量線性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【詳解】取中點(diǎn),連接,,,即.,,,則.故選:.【點(diǎn)睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.9、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點(diǎn)有復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.10、B【解析】

先根據(jù)復(fù)數(shù)的乘法計(jì)算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.11、A【解析】

由復(fù)數(shù)的除法求出,然后計(jì)算.【詳解】,∴.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘除法運(yùn)算,考查共軛復(fù)數(shù)的概念,掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.12、B【解析】

由焦點(diǎn)得拋物線方程,設(shè)點(diǎn)的坐標(biāo)為,根據(jù)對稱可求出點(diǎn)的坐標(biāo),寫出直線方程,聯(lián)立拋物線求交點(diǎn),計(jì)算弦長即可.【詳解】拋物線的焦點(diǎn)為,則,即,設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個(gè)交點(diǎn)為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),點(diǎn)關(guān)于直線對稱,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意,根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,即可求得數(shù)列的通項(xiàng)公式.【詳解】由題意,可知當(dāng)時(shí),;當(dāng)時(shí),.又因?yàn)椴粷M足,所以.【點(diǎn)睛】本題主要考查了利用數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系求解數(shù)列的通項(xiàng)公式,其中解答中熟記數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、x﹣y=0.【解析】

先將x=1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對函數(shù)求導(dǎo)數(shù),進(jìn)一步求出切線斜率,最后利用點(diǎn)斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點(diǎn)滿足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.15、1【解析】

根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.16、【解析】

由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)點(diǎn)M的軌跡C的方程為,軌跡C是以,為焦點(diǎn),長軸長為4的橢圓(2)【解析】

(1)設(shè),根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點(diǎn),長軸長為的橢圓;(2)設(shè),與橢圓方程聯(lián)立,利用求得;利用韋達(dá)定理表示出與,根據(jù)平行四邊形和向量的坐標(biāo)運(yùn)算求得,消去后得到軌跡方程;根據(jù)求得的取值范圍,進(jìn)而得到最終結(jié)果.【詳解】(1)設(shè),則由知:點(diǎn)在圓上點(diǎn)的軌跡的方程為:軌跡是以,為焦點(diǎn),長軸長為的橢圓(2)設(shè),由題意知的斜率存在設(shè),代入得:則,解得:設(shè),,則四邊形為平行四邊形又∴,消去得:頂點(diǎn)的軌跡方程為【點(diǎn)睛】本題考查圓錐曲線中的軌跡方程的求解問題,關(guān)鍵是能夠利用已知中所給的等量關(guān)系建立起動點(diǎn)橫縱坐標(biāo)滿足的關(guān)系式,進(jìn)而通過化簡整理得到結(jié)果;易錯(cuò)點(diǎn)是求得軌跡方程后,忽略的取值范圍.18、(1)(2)直線過定點(diǎn),該定點(diǎn)的坐標(biāo)為.【解析】

(1)因?yàn)闄E圓過點(diǎn),所以①,設(shè)為坐標(biāo)原點(diǎn),因?yàn)椋?,又,所以②,將①②?lián)立解得(負(fù)值舍去),所以橢圓的標(biāo)準(zhǔn)方程為.(2)由(1)可知,設(shè),.將代入,消去可得,則,,,所以,所以,此時(shí),所以,此時(shí)直線的方程為,即,令,可得,所以直線過定點(diǎn),該定點(diǎn)的坐標(biāo)為.19、(1)見解析;(2)【解析】

(1)設(shè),,注意到在上單增,再利用零點(diǎn)存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造函數(shù),求導(dǎo)討論的最值即可.【詳解】(1)由已知,,所以,設(shè),,當(dāng)時(shí),單調(diào)遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點(diǎn),當(dāng)時(shí),;當(dāng)時(shí),;∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小值點(diǎn),即在區(qū)間上存在唯一的極小值點(diǎn);(2)設(shè),,,∴在單調(diào)遞增,,即,從而,因?yàn)楹瘮?shù)在上單調(diào)遞減,∴在上恒成立,令,∵,∴,在上單調(diào)遞減,,當(dāng)時(shí),,則在上單調(diào)遞減,,符合題意.當(dāng)時(shí),在上單調(diào)遞減,所以一定存在,當(dāng)時(shí),,在上單調(diào)遞增,與題意不符,舍去.綜上,的取值范圍是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)、不等式恒成立問題,在處理恒成立問題時(shí),通常是構(gòu)造函數(shù),轉(zhuǎn)化成函數(shù)的最值來處理,本題是一道較難的題.20、(1);(2);(2)見解析.【解析】

(1)由圓的方程求出點(diǎn)坐標(biāo),得雙曲線的,再計(jì)算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計(jì)算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點(diǎn)不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設(shè),由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設(shè)由得:,,由得,解得,,,所以,,,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),等號成立,∴軸上不存在點(diǎn),使得.【點(diǎn)睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運(yùn)算,本題對學(xué)生的運(yùn)算求解能力要求較高,解題時(shí)都是直接求出交點(diǎn)坐標(biāo).難度較大,屬于困難題.21、(1)證明見解析(2)【解析】

(1)因?yàn)檎叫蜛BCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因?yàn)槠矫鍭BMN,平面ABMN,所以,,因?yàn)?,所以,因?yàn)椋?,所以,因?yàn)樵谥苯翘菪蜛BMN中,,所以,所以,所以,因?yàn)椋云矫妫?)如圖,取BM的中點(diǎn)E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以NE∥CD,因?yàn)槠矫鍯DM,平面CDM,所以NE∥平面CDM,所以點(diǎn)N到平面CDM的距離與點(diǎn)E到平面CDM的距離相等,設(shè)點(diǎn)N到平面CDM的距離為h,由可得點(diǎn)B到平面CDM的距離為2h,由題易得平面BCM,所以,且,所以,又,所以由可得,解得,所以點(diǎn)N到平面CDM的距離為.22、(1)(?。áⅲ┓植急硪娊馕?;(2)理由見解析【解析】

(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.

(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長的排序一共有24種情況,由此能求出X的分布列.

(2)假設(shè)家長對小孩的飲食習(xí)慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論