




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、2023年高考數(shù)學(xué)模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。
2、1在中,為中點,且,若,則( )ABCD2的圖象如圖所示,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是( )ABCD3已知函數(shù),若,則下列不等關(guān)系正確的是( )ABCD4已知向量,則向量在向量方向上的投影為( )ABCD5連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當(dāng)取得最大值時,雙曲線的離心率為( )ABCD6集合的子集的個數(shù)是( )A2B3C4D87函數(shù)(其中,)的圖象如圖,則此函數(shù)表達式為( )ABCD8設(shè)點,不共線,則“”是“”( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分又不必要條件9等比數(shù)列的前項和為,若,則( )AB
3、CD10設(shè)是定義在實數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時,則,的大小關(guān)系是( )ABCD11若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則( )A1B0CD12已知冪函數(shù)的圖象過點,且,則,的大小關(guān)系為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13的展開式中的系數(shù)為_.14在面積為的中,若點是的中點,點滿足,則的最大值是_.15已知數(shù)列是等比數(shù)列,則_.16袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)當(dāng)時,解不等式;(2)當(dāng)時,不等式恒成立,求實數(shù)的取
4、值范圍.18(12分)已知ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C(1)求cosC的值;(2)若a3,c,求ABC的面積19(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米開發(fā)商計劃從點出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作設(shè)(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設(shè)計到最長,求的最大值20(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲
5、線上各點縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標(biāo)均為極坐標(biāo),),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.21(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.22(10分)在中,角,所對的邊分別為,已知,角為銳角,的面積為.(1)求角的大?。唬?)求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合
6、題目要求的。1B【解析】選取向量,為基底,由向量線性運算,求出,即可求得結(jié)果.【詳解】, ,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎(chǔ)題.2B【解析】根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,則,取,則,可得,當(dāng)時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.3B【解析】利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【詳解】在R上單調(diào)遞增,且,.的符號無法判斷,故
7、與,與的大小不確定,對A,當(dāng)時,故A錯誤;對C,當(dāng)時,故C錯誤;對D,當(dāng)時,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎(chǔ)題.4A【解析】投影即為,利用數(shù)量積運算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數(shù)量積運算,難度不大,屬于基礎(chǔ)題.5D【解析】先求出四個頂點、四個焦點的坐標(biāo),四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而
8、求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標(biāo)為,四個焦點的坐標(biāo)為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當(dāng)取得最大值時有,離心率,故選:D.【點睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.6D【解析】先確定集合中元素的個數(shù),再得子集個數(shù)【詳解】由題意,有三個元素,其子集有8個故選:D【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個7B【解析】由圖象的頂點坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點,求出,從而得出函數(shù)解析式.【詳解
9、】解:由圖象知,則,圖中的點應(yīng)對應(yīng)正弦曲線中的點,所以,解得,故函數(shù)表達式為故選:B.【點睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.8C【解析】利用向量垂直的表示、向量數(shù)量積的運算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.9D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,所以,故解得:,從而公比;那么,故選D考點:等比數(shù)列10C
10、【解析】y=f(x+1)是偶函數(shù),f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對稱當(dāng)x1時,為減函數(shù),f(log32)=f(2-log32)= f()且=log34,log343,bac,故選C11C【解析】根據(jù)復(fù)數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可【詳解】解:,則,故選:C【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的運算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題12A【解析】根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.二、填空題:本
11、題共4小題,每小題5分,共20分。1328【解析】將已知式轉(zhuǎn)化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點睛】本題考查二項式展開式中的某特定項的系數(shù),關(guān)鍵在于將原表達式化簡將三項的冪的形式轉(zhuǎn)化為可求的二項式的形式,屬于基礎(chǔ)題.14【解析】由任意三角形面積公式與構(gòu)建關(guān)系表示|AB|AC|,再由已知與平面向量的線性運算、平面向量數(shù)量積的運算轉(zhuǎn)化,最后由重要不等式求得最值.【詳解】由ABC的面積為得|AB|AC|sinBAC=,所以|AB|AC|sinBAC=,又,即|AB|AC|cosBA
12、C=,由與的平方和得:|AB|AC|=,又點M是AB的中點,點N滿足,所以,當(dāng)且僅當(dāng)時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.15【解析】根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎(chǔ)題.16【解析】基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個數(shù)m72,由此能求出其中三種顏色的球都有的概率【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2
13、個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數(shù)m72,其中三種顏色的球都有的概率是p故答案為:【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1); (2).【解析】(1)分類討論去絕對值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對值,轉(zhuǎn)化為在時恒成立,得到,在恒成立,從而得到的取值范圍.【詳解】(1)當(dāng)時,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),因為,所以,又
14、,得.不等式恒成立,即在時恒成立,不等式恒成立必須,解得.所以,解得,結(jié)合,所以,即的取值范圍為.【點睛】本題考查分類討論解絕對值不等式,含有絕對值的不等式的恒成立問題.屬于中檔題.18(1);(2)或【解析】(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b1或b3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b23c24ab,即a2+b2c2ab,cosC;(2)把a3,c,代入3a2+3b23c24ab得:b1或b3,cosC,C為三角形內(nèi)角,sinC,SABCabsi
15、nC3bb,則ABC的面積為或【點睛】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.19(1),;(2)米.【解析】(1) 過點作于點再在中利用正弦定理求解,再根據(jù)求解,進而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設(shè),求導(dǎo)分析函數(shù)的單調(diào)性與最值即可.【詳解】解:過點作于點 則,在中,由正弦定理得:, ,因為,化簡得,令,且,因為,故令即,記,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減,又, 當(dāng)時,取最大值,此時,的最大值為米【點睛】本題主要考查了三角函數(shù)在實際中的應(yīng)用,需要根據(jù)題意建立角度與長度間的關(guān)系,進而求導(dǎo)分析函數(shù)的單調(diào)
16、性,根據(jù)三角函數(shù)值求解對應(yīng)的最值即可.屬于難題.20(1),(2)存在,【解析】(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程.根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得直線的直角坐標(biāo)方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標(biāo)伸長到原來的2倍,得到曲線的直角坐標(biāo)方程為,其極坐標(biāo)方程為,直線的直角坐標(biāo)方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.由圖像可知,存在這樣的點,則,且點到直線的距離,.【點睛】本小題主要考查坐標(biāo)變換,考查直線和圓的位置關(guān)系,考查極
17、坐標(biāo)方程和直角坐標(biāo)方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.21(1)見解析;(2)【解析】(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標(biāo)系,求平面的一個法向量與平面的一個法向量,再利用向量數(shù)量積運算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,所以,因為,所以平面,又平面,所以.(2)設(shè),由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點,為的中點,所以平行且相等,從而平面,又,所以,兩兩垂直,如圖,建立空間直角坐標(biāo)系,由平面幾何知識,得.則,所以,.設(shè)平面的法向量為,由,可得,令,則,所以.同理,平面的一個法向量為.設(shè)平面與平面所成角為,則,所以.【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)電商的地域品牌建設(shè)試題及答案
- 商務(wù)倫理與社會責(zé)任的試題及答案
- 2025年樂理考試備考注意事項試題及答案
- 2025年幼兒園數(shù)學(xué)考題及答案
- 2025年注冊土木工程師考試工程依據(jù)試題及答案
- 2025年樂理考試動態(tài)評測題及答案
- 商法主觀題試題及答案
- 2025年新能源汽車技術(shù)挑戰(zhàn)解析試題及答案
- 中國輕型液壓缸行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告2025-2028版
- 商務(wù)談判2025年商務(wù)英語考試試題及答案
- (市質(zhì)檢)莆田市2025屆高中畢業(yè)班第四次教學(xué)質(zhì)量檢測試卷語文試卷(含答案解析)
- 瓷磚空鼓裝修合同協(xié)議
- 中職生職業(yè)生涯課件
- 煙臺2025年煙臺市蓬萊區(qū)“蓬選”考選90人筆試歷年參考題庫附帶答案詳解
- 2025年浙江省生態(tài)環(huán)境廳所屬事業(yè)單位招聘考試備考題庫
- 入團考試測試題及答案
- 河南省普通高中2024-2025學(xué)年高三下學(xué)期學(xué)業(yè)水平選擇性模擬考試(四)歷史試題(原卷版+解析版)
- 一例盆腔臟器脫垂全盆底重建術(shù)患者的護理
- 快手賬號轉(zhuǎn)讓合同范例
- 勞務(wù)公司與公司合作協(xié)議書
- 金星星座查詢對照表
評論
0/150
提交評論