




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、解一元一次方程應(yīng)用題的一般步驟?解一元一次方程應(yīng)用題的一般步驟?一、復(fù)習(xí)一、復(fù)習(xí)第一步:第一步:弄清題意和題目中的已知數(shù)、未知弄清題意和題目中的已知數(shù)、未知數(shù),用字母表示題目中的一個未知數(shù);數(shù),用字母表示題目中的一個未知數(shù);第二步:第二步:找出能夠表示應(yīng)用題全部含義的相找出能夠表示應(yīng)用題全部含義的相等關(guān)系;等關(guān)系;第三步:第三步:根據(jù)這些相等關(guān)系列出需要的代數(shù)根據(jù)這些相等關(guān)系列出需要的代數(shù)式(簡稱關(guān)系式)從而列出方程;式(簡稱關(guān)系式)從而列出方程;第四步:第四步:解這個方程,求出未知數(shù)的值;解這個方程,求出未知數(shù)的值;第五步:第五步:在檢查求得的答數(shù)是否符合應(yīng)用題在檢查求得的答數(shù)是否符合應(yīng)用題
2、的實際意義后,寫出答案(及單位名稱)。的實際意義后,寫出答案(及單位名稱)。傳播問題1.要組織一場籃球聯(lián)賽要組織一場籃球聯(lián)賽,賽制為單循環(huán)形式賽制為單循環(huán)形式,即每兩即每兩隊之間都賽一場隊之間都賽一場,計劃安排計劃安排15場比賽場比賽,應(yīng)邀請多少個應(yīng)邀請多少個球隊參加比賽球隊參加比賽?3.要組織一場籃球聯(lián)賽要組織一場籃球聯(lián)賽, 每兩隊之間都賽每兩隊之間都賽2場場,計劃計劃安排安排90場比賽場比賽,應(yīng)邀請多少個球隊參加比賽應(yīng)邀請多少個球隊參加比賽?2.參加一次聚會的每兩人都握了一次手參加一次聚會的每兩人都握了一次手,所有人共所有人共握手握手10次次,有多少人參加聚會有多少人參加聚會?例題例題4.
3、參加一次聚會的每兩人都互贈禮物參加一次聚會的每兩人都互贈禮物,所有人共所有人共贈禮物贈禮物90次次,有多少人參加聚會有多少人參加聚會?n 列一元二次方程解應(yīng)用題的步驟與列一元一列一元二次方程解應(yīng)用題的步驟與列一元一次方程解應(yīng)用題的步驟類似,即審、設(shè)、列、次方程解應(yīng)用題的步驟類似,即審、設(shè)、列、解、檢、答解、檢、答n 在列一元二次方程解應(yīng)用題時,由于所得的在列一元二次方程解應(yīng)用題時,由于所得的根一般有兩個,所以要檢驗這兩個根是否符合根一般有兩個,所以要檢驗這兩個根是否符合實際問題的要求實際問題的要求列一元二次方程解應(yīng)用題應(yīng)該注意的問題列一元二次方程解應(yīng)用題應(yīng)該注意的問題 有一人患了流感有一人患了
4、流感,經(jīng)過兩輪傳染后經(jīng)過兩輪傳染后共有共有121人患了流感人患了流感,每輪傳染中平均一每輪傳染中平均一個人傳染了幾個人個人傳染了幾個人? 分分析析 1第一輪傳染第一輪傳染后后1+x第二輪傳染后第二輪傳染后1+x+x(1+x)x1=x2=如果按照這樣的傳染速度,三輪傳染后有多少人患流感?如果按照這樣的傳染速度,三輪傳染后有多少人患流感? 有一個人收到短消息后有一個人收到短消息后,再用手機(jī)轉(zhuǎn)發(fā)短消息再用手機(jī)轉(zhuǎn)發(fā)短消息,經(jīng)過兩輪轉(zhuǎn)發(fā)后共有經(jīng)過兩輪轉(zhuǎn)發(fā)后共有144人收到了短消息人收到了短消息,問每問每輪轉(zhuǎn)發(fā)中平均一個人轉(zhuǎn)發(fā)給幾個人輪轉(zhuǎn)發(fā)中平均一個人轉(zhuǎn)發(fā)給幾個人?1+x1+x+(x+x2)分析分析: :
5、設(shè)每輪轉(zhuǎn)發(fā)中平均一個人轉(zhuǎn)發(fā)給設(shè)每輪轉(zhuǎn)發(fā)中平均一個人轉(zhuǎn)發(fā)給x x個人個人, ,第一輪后有第一輪后有 人收到了短消息人收到了短消息, ,這些人這些人中的每個人又轉(zhuǎn)發(fā)了中的每個人又轉(zhuǎn)發(fā)了x x人人, ,第二輪后共有第二輪后共有 個人收到短消息個人收到短消息. . 1.某種植物的主干長出若干數(shù)目的支干某種植物的主干長出若干數(shù)目的支干,每個支干每個支干又長出同樣數(shù)目的小分支又長出同樣數(shù)目的小分支,主干主干,支干和小分支的支干和小分支的總數(shù)是總數(shù)是91,每個支干長出多少小分支每個支干長出多少小分支?主主干干支干支干支干支干小小分分支支小小分分支支小小分分支支小小分分支支xxx1解解:設(shè)每個支干長出設(shè)每個支
6、干長出x個小分支個小分支,則則1+x+xx=91即即解得解得, x1=9,x2=10(不合題意不合題意,舍去舍去)答答:每個支干長出每個支干長出9個小分支個小分支. 2003年我國政府工作報告指出年我國政府工作報告指出:為解決農(nóng)民負(fù)擔(dān)為解決農(nóng)民負(fù)擔(dān)過重問題過重問題,在近兩年的稅費(fèi)政策改革中在近兩年的稅費(fèi)政策改革中,我國政府采取我國政府采取了一系列政策措施了一系列政策措施,2001年中央財政用于支持這項改革年中央財政用于支持這項改革試點(diǎn)的資金約為試點(diǎn)的資金約為180億元億元,預(yù)計到預(yù)計到2003年將到達(dá)年將到達(dá)304.2億億元元,求求2001年到年到2003年中央財政每年投入支持這項改革年中央財
7、政每年投入支持這項改革資金的平均增長率資金的平均增長率?例例解解:這兩年的平均增長率為這兩年的平均增長率為x,依題有依題有(以下大家完成)(以下大家完成)180分析分析:設(shè)這兩年的平均增長率為設(shè)這兩年的平均增長率為x,2001年年 2002 年年 2003年年180(1+x)1.某廠今年一月的總產(chǎn)量為某廠今年一月的總產(chǎn)量為500噸噸,三月的總產(chǎn)量三月的總產(chǎn)量為為720噸噸,平均每月增長率是平均每月增長率是x,列方程列方程( )A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=5002.某校去年對實驗器材的投資為某校去年對實驗
8、器材的投資為2萬元萬元,預(yù)計今明預(yù)計今明兩年的投資總額為兩年的投資總額為8萬元萬元,若設(shè)該校今明兩年在若設(shè)該校今明兩年在實驗器材投資上的平均增長率是實驗器材投資上的平均增長率是x,則可列方程則可列方程為為 .B平均增長(降低)率的應(yīng)用題平均增長(降低)率的應(yīng)用題 平均增長(降低)率公式平均增長(降低)率公式(1)1與與 x 的位置不要調(diào)換;的位置不要調(diào)換;(2)解這類問題列出的方程一般用)解這類問題列出的方程一般用 “ 直接直接開平方法開平方法 ”。注意注意 類似地類似地 這種增長率的問題在這種增長率的問題在實際生活普遍存在實際生活普遍存在,有一定的模式有一定的模式 若平均增長若平均增長(或降
9、低或降低)百分率為百分率為x,增長增長(或或降低降低)前的是前的是a,增長增長(或降低或降低)n次后的量是次后的量是A,則則它們的數(shù)量關(guān)系可表示為它們的數(shù)量關(guān)系可表示為其中增長取其中增長取“+”,降低取降低取“”試一試試一試 1.某鄉(xiāng)無公害蔬菜的產(chǎn)量在兩年內(nèi)從某鄉(xiāng)無公害蔬菜的產(chǎn)量在兩年內(nèi)從20噸增加到噸增加到35噸噸.設(shè)這兩年無公害蔬菜產(chǎn)量的年平均增長率為設(shè)這兩年無公害蔬菜產(chǎn)量的年平均增長率為x,根據(jù)題意根據(jù)題意,列出方程為列出方程為 _ .3.某經(jīng)濟(jì)開發(fā)區(qū)今年一月份工業(yè)產(chǎn)值達(dá)某經(jīng)濟(jì)開發(fā)區(qū)今年一月份工業(yè)產(chǎn)值達(dá)50億元億元,第一季第一季度總產(chǎn)值度總產(chǎn)值175億元億元,設(shè)二月、三月平均每月增長的百
10、分率設(shè)二月、三月平均每月增長的百分率為為x,根據(jù)題意得方程為根據(jù)題意得方程為( )2某電視機(jī)廠某電視機(jī)廠1999年生產(chǎn)一種彩色電視機(jī)年生產(chǎn)一種彩色電視機(jī),每臺成本每臺成本 3000元元,由于該廠不斷進(jìn)行技術(shù)革新由于該廠不斷進(jìn)行技術(shù)革新,連續(xù)兩年降低成本連續(xù)兩年降低成本, 至至2001年這種彩電每臺成本僅為年這種彩電每臺成本僅為1920元元,設(shè)平均每年降設(shè)平均每年降低成本的百分?jǐn)?shù)為低成本的百分?jǐn)?shù)為x,可列方程可列方程_. 練習(xí)練習(xí)黨的黨的 十六大提出全面建設(shè)小康社會,加快社會主十六大提出全面建設(shè)小康社會,加快社會主義現(xiàn)代化義現(xiàn)代化 建設(shè)建設(shè) ,力爭國民生產(chǎn)總值到,力爭國民生產(chǎn)總值到2020年比年
11、比2000年翻兩翻,在本世紀(jì)的頭年翻兩翻,在本世紀(jì)的頭20年(年(20012020年)要實現(xiàn)這一目標(biāo),以十年為單位計算,設(shè)每年)要實現(xiàn)這一目標(biāo),以十年為單位計算,設(shè)每個十年的國民生產(chǎn)總值的增長率是個十年的國民生產(chǎn)總值的增長率是 那么那么滿滿足的足的 A ( 1+x)2= 2 B ( 1+x)2= 4 C 1+2x=2 D (1+x)+2(1+x)2=4問題問題某服裝廠花某服裝廠花12001200元購進(jìn)一批服裝,按元購進(jìn)一批服裝,按40% 40% 的利潤定價,無人購買,決定打折出的利潤定價,無人購買,決定打折出售,但仍無人購買,結(jié)果又一次打折才售售,但仍無人購買,結(jié)果又一次打折才售完,經(jīng)結(jié)算,這
12、批服裝共贏利完,經(jīng)結(jié)算,這批服裝共贏利280280元,若元,若兩次打折相同,每次打了幾折?列兩次打折相同,每次打了幾折?列 出方程出方程即可即可 商店里某種商品在兩個月里降價兩次,現(xiàn)在該商品每件商店里某種商品在兩個月里降價兩次,現(xiàn)在該商品每件的價格比兩個月前下降了的價格比兩個月前下降了36,問平均每月降價百分之,問平均每月降價百分之幾?幾?解:設(shè)平均每月降價的百分?jǐn)?shù)為解:設(shè)平均每月降價的百分?jǐn)?shù)為 ,又設(shè)兩個月前的價格為又設(shè)兩個月前的價格為 元,則現(xiàn)在的價格為元,則現(xiàn)在的價格為 元,元,根據(jù)題意,得根據(jù)題意,得 , 不合題意舍去不合題意舍去答:平均每月降價答:平均每月降價 類似地類似地 這種增長
13、率的問題在這種增長率的問題在實際生活普遍存在實際生活普遍存在,有一定的模式有一定的模式 若平均增長若平均增長(或降低或降低)百分率為百分率為x,增長增長(或或降低降低)前的是前的是a,增長增長(或降低或降低)n次后的量是次后的量是A,則則它們的數(shù)量關(guān)系可表示為它們的數(shù)量關(guān)系可表示為其中增長取其中增長取“+”,降低取降低取“”例:某商場銷售一批名牌襯衫,平均例:某商場銷售一批名牌襯衫,平均每天可售出每天可售出20件,每件盈利件,每件盈利40元,為元,為了擴(kuò)大銷售,增加盈利,盡快減少庫了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每
14、件襯衫降價經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫降價1元,元,商場平均每天可多售出商場平均每天可多售出2件,若商場平件,若商場平均每天要盈利均每天要盈利1200元,每件襯衫應(yīng)降元,每件襯衫應(yīng)降價多少元?價多少元?利潤問題主要用到的關(guān)系式是:利潤問題主要用到的關(guān)系式是:每件利潤每件利潤=每件售價每件售價-每件每件進(jìn)價;進(jìn)價;總利潤總利潤=每件利潤每件利潤總件數(shù)總件數(shù)分析:如果設(shè)每件襯衫降價分析:如果設(shè)每件襯衫降價x元,則每件襯衫盈利元,則每件襯衫盈利(40-x)元,根據(jù)每降價)元,根據(jù)每降價1元就多售出元就多售出2件,即降價件,即降價x元則多售出元則多售出2x件,即降價后每天可賣出(件,即降價后每天可賣出(2
15、0+2x)件,件,由總利潤由總利潤=每件利潤每件利潤售出商品的總量可以列出方程售出商品的總量可以列出方程解:設(shè)每件襯衫降價解:設(shè)每件襯衫降價x元,根據(jù)題意得:元,根據(jù)題意得:(40-x)(20+2x)=1200整理得,整理得,x2-30 x+200=0解方程得,解方程得,x1=10,x2=20因為要盡快減少庫存,所以因為要盡快減少庫存,所以x=10舍去。舍去。答:每件襯衫應(yīng)降價答:每件襯衫應(yīng)降價20元。元。某種新品種進(jìn)價是某種新品種進(jìn)價是120元,在試銷階段發(fā)現(xiàn)每件售價(元)與元,在試銷階段發(fā)現(xiàn)每件售價(元)與產(chǎn)品的日銷售量(件)始終存在下表中的數(shù)量關(guān)系:產(chǎn)品的日銷售量(件)始終存在下表中的數(shù)
16、量關(guān)系:每件售(元)130150165每日銷售(件)705035(1)請你根據(jù)上表中所給數(shù)據(jù)表述出每件售價提高的數(shù)量(元)與日銷)請你根據(jù)上表中所給數(shù)據(jù)表述出每件售價提高的數(shù)量(元)與日銷售量減少的數(shù)量(件)之間的關(guān)系。售量減少的數(shù)量(件)之間的關(guān)系。(2)在不改變上述關(guān)系的情況下,請你幫助商場經(jīng)理策劃每件在不改變上述關(guān)系的情況下,請你幫助商場經(jīng)理策劃每件商品定價為多少元時,每日盈利可達(dá)到商品定價為多少元時,每日盈利可達(dá)到1600元?元?例例4 4:百佳超市將進(jìn)貨單價為:百佳超市將進(jìn)貨單價為4040元的商品按元的商品按5050元出售時,能賣元出售時,能賣500500個,已知該商品要漲價個,已知
17、該商品要漲價1 1元,其銷售量就要減少元,其銷售量就要減少1010個,為了個,為了賺賺80008000元利潤,售價應(yīng)定為多少,這時應(yīng)進(jìn)貨為多少個?元利潤,售價應(yīng)定為多少,這時應(yīng)進(jìn)貨為多少個?分析:設(shè)商品單價為(分析:設(shè)商品單價為(50+x)50+x)元元, ,則每個商品得利潤則每個商品得利潤 (50+x) 50+x) 4040元,元,因為每漲價因為每漲價1 1元,其銷售會減少元,其銷售會減少1010,則每個漲價,則每個漲價x x元,其銷售量會減少元,其銷售量會減少10 x10 x個,故銷售量為(個,故銷售量為(500 500 10 x10 x)個,根據(jù)每件商品的利潤)個,根據(jù)每件商品的利潤件數(shù)
18、件數(shù)=8000=8000,則應(yīng)用(,則應(yīng)用(500 500 10 x10 x) (50+x) 50+x) 40=800040=8000解:設(shè)每個商品漲價解:設(shè)每個商品漲價x元,則銷售價為(元,則銷售價為(50+x)元,銷售量為元,銷售量為(500 10 x)個,則)個,則(500 10 x) (50+x) 40=8000,整理得整理得 解得解得 都符合題意。都符合題意。當(dāng)當(dāng)x=10時時,50+ x =60,500 10 x=400;當(dāng)當(dāng) x=30時,時,50+ x =80, 500 10 x=200。答:要想賺答:要想賺80008000元,售價為元,售價為6060元或元或8080元;若售價為元
19、;若售價為6060元,則元,則進(jìn)貸量應(yīng)為進(jìn)貸量應(yīng)為400400;若售價為;若售價為8080元,則進(jìn)貸量應(yīng)為元,則進(jìn)貸量應(yīng)為200200個。個。生活有關(guān)一元二次方程的利潤問題生活有關(guān)一元二次方程的利潤問題回顧回顧面積公式面積公式ahabaaabhababhar 例:在長方形鋼片上沖去一個長方形,制成一個四在長方形鋼片上沖去一個長方形,制成一個四周寬相等的長方形框。已知長方形鋼片的長為周寬相等的長方形框。已知長方形鋼片的長為30cm,寬,寬為為20cm,要使制成的長方形框的面積為要使制成的長方形框的面積為400cm2,求這個,求這個長方形框的框邊寬。長方形框的框邊寬。X XX X30cm30cm2
20、0cm20cm解解:設(shè)長方形框的邊寬為設(shè)長方形框的邊寬為xcm,依題意依題意,得得3020(302x)(202x)=400整理得整理得 x2 25x+100=0得得 x1=20, x2=5當(dāng)當(dāng)x=20時時,20-2x= -20(舍去舍去);當(dāng)當(dāng)x=5時時,20-2x=10答答:這個長方形框的框邊寬為這個長方形框的框邊寬為5cm分析分析:本題關(guān)鍵是如何用本題關(guān)鍵是如何用x的代數(shù)式表示這個長方形框的面積的代數(shù)式表示這個長方形框的面積 如圖,某中學(xué)為方便師生活動,準(zhǔn)備如圖,某中學(xué)為方便師生活動,準(zhǔn)備在長在長30m,寬,寬20m的矩形草坪上修筑兩橫的矩形草坪上修筑兩橫兩縱四條小路,橫縱路的寬度之比為兩
21、縱四條小路,橫縱路的寬度之比為3 2 ,若使余下的草坪面積是原來草坪面積的若使余下的草坪面積是原來草坪面積的四分之三,則路寬應(yīng)為多少?四分之三,則路寬應(yīng)為多少?新課導(dǎo)入 某林場計劃修一條長某林場計劃修一條長750m,斷面為等腰梯,斷面為等腰梯形的渠道,斷面面積為形的渠道,斷面面積為1.6 m2,上口寬比渠深多,上口寬比渠深多2m,渠底比渠深多,渠底比渠深多0.4m。 (1)渠道的上口寬與渠底寬各是多少?)渠道的上口寬與渠底寬各是多少? (2)如果計劃每天挖土)如果計劃每天挖土48 m3,需要多少天,需要多少天才能把這條渠道挖完?才能把這條渠道挖完? 實際問題解:(解:(1)設(shè)渠深為)設(shè)渠深為x
22、m則渠底為(則渠底為(x+0.4)m,上口寬為(,上口寬為(x+2)m依題意,得:依題意,得:整理,得:整理,得:解得:解得:上口寬為上口寬為2.8m,渠底為,渠底為1.2m。(2)答:渠道的上口寬與渠底深各是答:渠道的上口寬與渠底深各是2.8m和和1.2m。需。需要要25天才能挖完渠道。天才能挖完渠道。 要設(shè)計一本書的封面要設(shè)計一本書的封面,封面長封面長27,寬寬21,正正中央是一個與整個封面長寬比例相同的矩形中央是一個與整個封面長寬比例相同的矩形,如如果要使四周的邊襯所占面積是封面面積的四分果要使四周的邊襯所占面積是封面面積的四分之一之一,上、下邊襯等寬上、下邊襯等寬,左、右邊襯等寬左、右
23、邊襯等寬,應(yīng)如何設(shè)應(yīng)如何設(shè)計四周邊襯的寬度計四周邊襯的寬度?2721實際問題設(shè)正中央的矩形兩邊分別設(shè)正中央的矩形兩邊分別為為9xcm,7xcm依題意得依題意得解得解得 故上下邊襯的寬度為故上下邊襯的寬度為:左右邊襯的寬度為左右邊襯的寬度為:解法一解法一:分析分析:這本書的長寬之比是這本書的長寬之比是9:7,依題知正中央的矩依題知正中央的矩形兩邊之比也為形兩邊之比也為9:7分析分析:這本書的長寬之比是這本書的長寬之比是9:7,正中央的矩形兩邊正中央的矩形兩邊之比也為之比也為9:7,由此判斷上下邊襯與左右邊襯的寬由此判斷上下邊襯與左右邊襯的寬度之比也為度之比也為9:7設(shè)上下邊襯的寬為設(shè)上下邊襯的寬
24、為9xcm,左右邊襯寬為,左右邊襯寬為7xcm依題意得依題意得解方程得解方程得(以下同學(xué)們自己完成以下同學(xué)們自己完成)方程的哪個根合方程的哪個根合乎實際意義乎實際意義? ?為什么為什么? ?解法二解法二: 某校為了美化校園某校為了美化校園,準(zhǔn)備在一塊長準(zhǔn)備在一塊長32米米,寬寬20米米的長方形場地上修筑若干條道路的長方形場地上修筑若干條道路,余下部分作草坪余下部分作草坪,并請全校同學(xué)參與設(shè)計并請全校同學(xué)參與設(shè)計,現(xiàn)在有兩位學(xué)生各設(shè)計了現(xiàn)在有兩位學(xué)生各設(shè)計了一種方案一種方案(如圖如圖),根據(jù)兩種設(shè)計方案各列出方程根據(jù)兩種設(shè)計方案各列出方程,求求圖中道路的寬分別是多少?使圖(圖中道路的寬分別是多少
25、?使圖(1),(2)的草)的草坪面積為坪面積為540米米2。(1)(2)實際問題(1)解解:(1)如圖,設(shè)道路的寬為)如圖,設(shè)道路的寬為 x 米,則米,則化簡得,化簡得,其中的其中的 x=25超出了原矩形的寬,應(yīng)舍去。超出了原矩形的寬,應(yīng)舍去。圖(圖(1)中道路的寬為)中道路的寬為1米。米。則橫向的路面面積為則橫向的路面面積為_,分析:此題的相等關(guān)系是矩形面積減去道路面分析:此題的相等關(guān)系是矩形面積減去道路面積等于積等于540米米2。解法一:解法一: 如圖,設(shè)道路的寬為如圖,設(shè)道路的寬為x米,米,32x 米米2 2縱向的路面面積為縱向的路面面積為_。20 x 米米2 2注意:這兩個面積的重疊部
26、分是注意:這兩個面積的重疊部分是 x2 米米2所列的方程是不是所列的方程是不是?圖中的道路面積不是圖中的道路面積不是米米2 2。(2)而是從其中減去重疊部分,即應(yīng)是而是從其中減去重疊部分,即應(yīng)是米米2所以正確的方程是:所以正確的方程是:化簡得,化簡得,其中的其中的 x=50超出了原矩形的長和寬,應(yīng)舍去超出了原矩形的長和寬,應(yīng)舍去.取取x=2時,道路總面積為:時,道路總面積為: =100 (米米2)草坪面積草坪面積= 540(米(米2)答:所求道路的寬為答:所求道路的寬為2米。米。解法二:解法二: 我們利用我們利用“圖形經(jīng)過移動,它的面積大小不圖形經(jīng)過移動,它的面積大小不會改變會改變”的道理,把
27、縱、橫兩條路移動一下,使的道理,把縱、橫兩條路移動一下,使列方程容易些(目的是求出路面的寬,至于實際列方程容易些(目的是求出路面的寬,至于實際施工,仍可按原圖的位置修路)施工,仍可按原圖的位置修路)(2)橫向路面橫向路面_,如圖,設(shè)路寬為如圖,設(shè)路寬為x米,米,32x米米2縱向路面面積為縱向路面面積為_。20 x米米2草坪矩形的長(橫向)為草坪矩形的長(橫向)為 _,草坪矩形的寬(縱向)草坪矩形的寬(縱向)_。相等關(guān)系是:草坪長相等關(guān)系是:草坪長草坪寬草坪寬=540米米2(20-x)米米(32-x)米米即即化簡得:化簡得:再往下的計算、格式書寫與解法再往下的計算、格式書寫與解法1相同。相同。
28、某輛汽車在公路上行駛,它行駛的路程某輛汽車在公路上行駛,它行駛的路程s(m)和時間)和時間t(s)之間的關(guān)系為:)之間的關(guān)系為: ,那么行駛那么行駛200m需要多長時間需要多長時間? 解:當(dāng)解:當(dāng)s = 200時,時, , 解得解得答:行駛答:行駛200m需需 。路程速度路程速度時間時間 實際問題 一輛汽車以一輛汽車以20m/s的速度行駛,司機(jī)發(fā)現(xiàn)前方的速度行駛,司機(jī)發(fā)現(xiàn)前方路面有情況,緊急剎車后汽車又滑行路面有情況,緊急剎車后汽車又滑行25m后停車。后停車。 (1)從剎車到停車用了多少時間)從剎車到停車用了多少時間? (2)從剎車到停車平均每秒車速減少多少)從剎車到停車平均每秒車速減少多少?
29、 (3)剎車后汽車滑行到)剎車后汽車滑行到15m時約用了多少時間時約用了多少時間(精確到(精確到0.1s)? 實際問題解:(解:(1)從剎車到停車所用的路程是)從剎車到停車所用的路程是25m;從剎車到停;從剎車到停車的平均車速是車的平均車速是 那么從剎車到停車所用的時間是那么從剎車到停車所用的時間是 (2)從剎車到停車車速的減少值是)從剎車到停車車速的減少值是20-0=20 從剎車到停車每秒平均車速減少值是從剎車到停車每秒平均車速減少值是 (3)設(shè)剎車后汽車滑行到)設(shè)剎車后汽車滑行到15m時約用了時約用了x s,這時車,這時車速為(速為(20-8x)m/s 則這段路程內(nèi)的平均車速為則這段路程內(nèi)
30、的平均車速為 所以所以x(20-4x)=15 整理得:整理得: 解方程:得解方程:得答:剎車后汽車行駛到答:剎車后汽車行駛到15m時約用時約用0.9s。解一元二次方程應(yīng)用題的一般步驟解一元二次方程應(yīng)用題的一般步驟: (1)弄清題目中的已知數(shù)、未知數(shù),用字母表)弄清題目中的已知數(shù)、未知數(shù),用字母表示題目中的一個未知數(shù);示題目中的一個未知數(shù); (2)找出能夠表示應(yīng)用題全部含義的相等關(guān)系;)找出能夠表示應(yīng)用題全部含義的相等關(guān)系; (3)根據(jù)這些相等關(guān)系列出需要的代數(shù)式(簡稱)根據(jù)這些相等關(guān)系列出需要的代數(shù)式(簡稱關(guān)系式)從而列出方程;關(guān)系式)從而列出方程; (4)解這個方程,求出未知數(shù)的值;)解這個
31、方程,求出未知數(shù)的值; (5)檢查求得的根是否符合應(yīng)用題的實際意義,)檢查求得的根是否符合應(yīng)用題的實際意義,寫出最后答案(及單位名稱)。寫出最后答案(及單位名稱)。知識要點(diǎn)知識要點(diǎn)隨堂練習(xí) 1. (1)某林場現(xiàn)有木材)某林場現(xiàn)有木材a立方米,預(yù)計在立方米,預(yù)計在今后兩年內(nèi)年平均增長今后兩年內(nèi)年平均增長p%,那么兩年后該林場,那么兩年后該林場有木材多少立方米有木材多少立方米? (2)某化工廠今年一月份生產(chǎn)化工原料)某化工廠今年一月份生產(chǎn)化工原料15萬噸,通過優(yōu)化管理,產(chǎn)量逐年上升,第一季度萬噸,通過優(yōu)化管理,產(chǎn)量逐年上升,第一季度共生產(chǎn)化工原料共生產(chǎn)化工原料60萬噸,設(shè)二、三月份平均增長萬噸,設(shè)
32、二、三月份平均增長的百分率相同,均為的百分率相同,均為x,可列出方程為,可列出方程為( )。)。 2. 某人將某人將2000元人民幣按一年定期存入銀行,元人民幣按一年定期存入銀行,到期后支取到期后支取1000元用于購物,剩下的元用于購物,剩下的1000元及應(yīng)元及應(yīng)得利息又全部按一年定期存入銀行,若存款的利得利息又全部按一年定期存入銀行,若存款的利率不變,到期后本金和利息共率不變,到期后本金和利息共1320元,求這種存元,求這種存款方式的年利率。款方式的年利率。解:設(shè)這種存款方式的年利率為解:設(shè)這種存款方式的年利率為x則:則:整理,得:整理,得: ,即即解得:解得:答:所求的年利率是答:所求的年
33、利率是12.5% 3。 某商店經(jīng)銷一種銷售成本為每千克某商店經(jīng)銷一種銷售成本為每千克40元元的水產(chǎn)品,據(jù)市場分析,若每千克的水產(chǎn)品,據(jù)市場分析,若每千克50元銷售,一元銷售,一個月能售出個月能售出500kg,銷售單價每漲,銷售單價每漲1元,月銷售量元,月銷售量就減少就減少10kg,針對這種水產(chǎn)品情況,請解答以下,針對這種水產(chǎn)品情況,請解答以下問題:問題: (1)當(dāng)銷售單價定為每千克)當(dāng)銷售單價定為每千克55元時,計算銷元時,計算銷售量和月銷售利潤。售量和月銷售利潤。 (2)設(shè)銷售單價為每千克)設(shè)銷售單價為每千克x元,月銷售利潤元,月銷售利潤為為y元,求元,求y與與x的關(guān)系式。的關(guān)系式。 (3)
34、商品想在月銷售成本不超過)商品想在月銷售成本不超過10000元的元的情況下,使得月銷售利潤達(dá)到情況下,使得月銷售利潤達(dá)到8000元,銷售單價元,銷售單價應(yīng)為多少應(yīng)為多少? 解:(解:(1)銷售量:)銷售量:500-510=450(kg);銷售利潤:);銷售利潤:450(55-40)=45015=6750元元(2)(3)由于水產(chǎn)品不超過)由于水產(chǎn)品不超過1000040=250kg,定價為,定價為x元,則元,則(x-400)500-10(x-50)=8000解得:解得:當(dāng)當(dāng) 時,進(jìn)貨時,進(jìn)貨500-10(80-50)=200kg250kg,(舍,(舍去)。去)。 4. 某海軍基地位于某海軍基地位于
35、A處,在其正南方向處,在其正南方向200海海里處有一重要目標(biāo)里處有一重要目標(biāo)B,在,在B的正東方向的正東方向200海里處有海里處有一重要目標(biāo)一重要目標(biāo)C,小島,小島D位于位于AC的中點(diǎn),島上有一補(bǔ)的中點(diǎn),島上有一補(bǔ)給碼頭:小島給碼頭:小島F位于位于BC上且恰好處于小島上且恰好處于小島D的正南的正南方向,一艘軍艦從方向,一艘軍艦從A出發(fā),經(jīng)出發(fā),經(jīng)B到到C勻速巡航,一般勻速巡航,一般補(bǔ)給船同時從補(bǔ)給船同時從D出發(fā),沿南偏西方向勻速直線航行,出發(fā),沿南偏西方向勻速直線航行,欲將一批物品送達(dá)軍艦。欲將一批物品送達(dá)軍艦。 (1)小島)小島D和小島和小島F相距多少海里相距多少海里? (2)已知軍艦的速度是補(bǔ)給船的)已知軍艦的速度是補(bǔ)給船的2倍,軍艦在倍,軍艦在由由B到到C的途中與補(bǔ)給船相遇于的途中與補(bǔ)給船相遇于E處,那么相遇時補(bǔ)處,那么相遇時補(bǔ)給船航行了多少海里給船航行了多少海里?(結(jié)果精確到(結(jié)果精確到0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漢中市重點(diǎn)中學(xué)2025年物理高二第二學(xué)期期末考試試題含解析
- 2025屆四川省成都鹽道街中學(xué)三物理高一第二學(xué)期期末考試試題含解析
- 2025屆福建廈門大同中學(xué)物理高二下期末統(tǒng)考試題含解析
- 2025年江蘇省揚(yáng)州高郵市物理高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 吉林省松原市油田第十一中學(xué)2025屆高二物理第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 公司高管的年終總結(jié)
- 2025年湖南省永州市物理高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 作文發(fā)考試卷
- 企業(yè)司機(jī)個人工作的述職報告
- 金融服務(wù)下沉對農(nóng)村信用社的影響及對策研究
- GB/T 44828-2024葡萄糖氧化酶活性檢測方法
- 2024年三級直播銷售員(高級)職業(yè)技能鑒定考試復(fù)習(xí)題庫(含答案)
- Unit 1 A new start 詞匯教學(xué)設(shè)計-2024-2025學(xué)年高中英語外研版必修第一冊
- 異位妊娠的課件
- 血管內(nèi)超聲IVUS簡介
- DL∕T 2528-2022 電力儲能基本術(shù)語
- 上海2024年上海市教育評估院招聘筆試上岸歷年典型考題與考點(diǎn)剖析附帶答案詳解
- 渣土清運(yùn)綜合項目施工組織設(shè)計
- 蘇教版八年級生物下冊期末試卷及答案【蘇教版】
- 書面檢查材料(通用6篇)
- 傳感器與機(jī)器視覺 課件 第六章 機(jī)器視覺
評論
0/150
提交評論