第七章練習(xí)題及參考答案_第1頁
第七章練習(xí)題及參考答案_第2頁
第七章練習(xí)題及參考答案_第3頁
第七章練習(xí)題及參考答案_第4頁
免費預(yù)覽已結(jié)束,剩余9頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、第七章練習(xí)題及參考7.1表 7.10 中給出了 1970-1987 年期間美國的個人消費(PCE)和個人可支配收入(PDI)數(shù)據(jù),所有數(shù)字的都是 10 億(1982 年的價)。表 7.101970-1987 年美國個人消費(PCE)和個人可支配收入(PDI)數(shù)據(jù)估計下列模型:PCEt = A1 + A2 PDIt + mtPCEt = B1 + B2 PDIt + B3 PCEt -1 + ut(1) 解釋這兩個回歸模型的結(jié)果。(2) 短期和長期邊際消費傾向(MPC)是多少?【練習(xí)題 7.1 參考解答】 1)第一個模型回歸的估計結(jié)果如下, Dependent Variable: PCEMeth

2、od: Least SquaresDate: 07/27/05Time: 21:41Sample: 1970 1987Included observations: 18VariableCoefficientStd. Errort-StatisticProb.C PDI-216.42691.00810632.694250.015033-6.61972367.059200.00000.0000R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihood Durbin-Watson stat0.9964

3、550.99623318.886285707.065-77.372691.366654Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statistic Prob(F-statistic)1955.606307.71708.8191888.9181184496.9360.000000回歸方程: PCEt = -216.4269 +1.008106PDIt年份PCEPDI年份PCEPDI年份PCEPDI19701492.01668.119711538.81728.419721621.917

4、97.419731689.61916.319741674.01896.619751711.91931.719761803.92001.019771883.82066.619781961.02167.419792004.42212.619802000.42214.319812042.22248.619822050.72261.519832146.02331.919842249.32469.819852354.82542.819862455.22640.919872521.02686.3(3269425) (0.015033)t =(-6.619723) (67.05920)R2 =0.99645

5、5F=4496.936第二個模型回歸的估計結(jié)果如下,Dependent Variable: PCE Method: Least SquaresDate: 07/27/05Time: 21:51Sample (adjusted): 1971 1987Included observations: 17 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C PDIPCE(-1)-233.27360.9823820.03715845.557360.1409280.144026-5.1204366.9708170.2579970.

6、00020.00000.8002R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihood Durbin-Watson stat0.9965420.99604818.477834780.022-72.053351.570195Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statistic Prob(F-statistic)1982.876293.91258.8298058.976843

7、2017.0640.000000回歸方程: PCEt = -233.2736 + 0.9824PDIt - 0.0372PCEt -1(45.557) (0.1409)t = (-5.120) (6.9708)(0.1440)(0.258)R2 =0.9965F=2017.0642)從模型一得到 MPC=1.008;從模型二得到,短期 MPC=0.9824,由于模型二為自回歸模型, 要先轉(zhuǎn)換為分布滯后模型才能得到長期邊際消費傾向,我們可以從庫伊克變換倒推得到長期MPC=0.9824/(1+0.0372)=0.9472。7.2表 7.11 中給出了某地區(qū) 1980-2001 年固定資產(chǎn)投資 Y

8、與銷售額 X 的資料。取阿爾蒙多項式的次數(shù) m=2,運用阿爾蒙多項式變換法估計分布滯后模型:+ b0 Xt + b1 Xt -1 + b2 Xt -2 + b3 Xt -3 + b4 Xt -4 + utY表 7.11某地區(qū) 1980-2001 年固定資產(chǎn)投資Y 與銷售額X 的資料(:億元)年份YX年份YX198036.9952.8051991128.68168.129198133.6055.9061992123.97163.351198235.4263.0271993117.35172.547198342.3572.9311994139.61190.682198452.4884.790199

9、5152.88194.538198553.6686.5891996137.95194.657【練習(xí)題 7.2 參考解答】分布滯后模型: Y+ b0 Xt + b1Xt -1 + . + b4 Xt -4 + uts=4,取 m=2。假設(shè) b0 = a0 , b1 = a0 +a1 +a2 , b2 = a0 + 2a1 + 4a2 ,b3 = a0 + 3a1 + 9a2,b4 = a0 + 4a1 +16a2(*)則模型可變?yōu)椋?Yt = a +a0 Z0t +a1Z1t +a2 Z2t + ut ,其中:Xt + Xt -1 + Xt -2 + Xt -3 + Xt -4 t -1 + 2

10、Xt -2 + 3Xt -3 + 4Xt -4Xt -1 + 4Xt -2 + 9Xt -3 +16Xt -4ZZ Z估計的回歸結(jié)果如下,Dependent Variable: Y Method: Least SquaresDate: 25/02/10Time: 23:19Sample (adjusted): 1984 2001Included observations: 18 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C Z0 Z1Z2-35.492340.891012-0.6699040.1043928.19

11、28840.1745630.2544470.062311-4.3320935.104248-2.6327831.6753380.00070.00020.01970.1160R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoodDurbin-Watson stat0.9846700.9813856.226131542.7059-56.196661.130400Mean dependent varS.D. dependent var Akaike info criterion Schwarz c

12、riterionF-statisticProb(F-statistic)121.232245.633486.6885176.886378299.74290.000000回歸方程: Y = -35.49243 + 0.891012Z0t - 0.669904Z1t + 0.104392Z2ta = -35.49124,a0 = 0.89101,a1 = -0.66990,a2 = 0.10439由(*)式可得,198658.5398.7971997141.06206.326198767.48113.2011998163.45223.541198878.13126.9051999183.80232

13、.724198995.13143.9362000192.61239.4591990112.60154.3912001182.81235.142b0 = 0.89101, b1 = 0.32550, b2 = -0.03123, b3 = -0.17917, b4 = -0.11833由阿爾蒙多項式變換可得如下估計結(jié)果:Y35.49234 + 0.89101Xt + 0.32550Xt -1-0.03123Xt -2 -0.17917Xt -3 -0.11833Xt -47.3 利用表 7.11 的數(shù)據(jù),運用局部調(diào)整假定或自適應(yīng)預(yù)期假定估計以下模型參數(shù),并解釋模型的意義,探測模型擾動項的一階自相

14、關(guān)性:1)設(shè)定模型= a + bX + uY *ttt其中Y * 為預(yù)期最佳值。t2)設(shè)定模型= abY *uX ettt其中Y * 為預(yù)期最佳值。t3)設(shè)定模型Y = a + bX + u*ttt其中 X * 為預(yù)期最佳值。t【練習(xí)題 7.3 參考解答】1)在局部調(diào)整假定下,先估計一階自回歸模型: Y = a+ b X + b Y+ u*0t1 t -1tt回歸的估計結(jié)果如下,Dependent Variable: YMethod: Least SquaresDate: 25/02/10Time: 22:42Sample (adjusted): 1981 2001Included obser

15、vations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C XY(-1)-15.104030.6292730.2716764.7294500.0978190.114858-3.1936136.4330312.3653150.00500.00000.0294R-squared Adjusted R-squaredS.E. of regression0.9871250.9856956.193728Mean dependent varS.D. dependent var Akaike info criteri

16、on109.216751.785506.616515Sum squared residLog likelihood Durbin-Watson stat690.5208-66.473411.518595Schwarz criterion F-statisticProb(F-statistic)6.765733690.05610.000000回歸方程: Y= -15.10403 + 0.629273X + 0.271676Yt-1tt(4.729450) (0.097819)(0.114858)t = (-3.193613) (6.433031) (2.365315)R2 =0.987125F=

17、690.0561DW=1.518595根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有a* = da ,b * = db , b = 1-d ,u = d u*01tt將上述估計結(jié)果代入得到:d = 1- b = 1- 0.271676 = 0.728324*1a = a * = -20.738064b = b=*00.864001dd故局部調(diào)整模型估計結(jié)果為: Y * = -20.738064 + 0.864001Xtt意義:該地區(qū)銷售額每增加 1 億元,未來預(yù)期最佳新增固定資產(chǎn)投資為 0.864001 億元。運用德賓 h 檢驗一階自相關(guān):h = (1- d )n= (1- 1 ´1.518595)

18、21= 1.297281- nVar(b )*1-21´ 0.1148582221在顯著性水平a = 0.05 上,查標(biāo)準(zhǔn)正態(tài)分布表得臨界值 ha = 1.96 ,由于2= 1.96 ,則接收原假設(shè) r = 0 ,說明自回歸模型不存= 1.29728 < ha2h在一階自相關(guān)問題。2)先對數(shù)變換模型,有l(wèi)nY = lna + b ln X + u*ttt= a + b ln X + b lnY*+ u*在局部調(diào)整假定下,先估計一階自回歸模型: lnYt1t -1tt0回歸的估計結(jié)果如下,Dependent Variable: LNY Method: Least SquaresD

19、ate: 25/02/10Time: 22:55Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C LNXLNY(-1)-1.0780460.9045220.2600330.1841440.1112430.087799-5.8543668.1310392.9616840.00000.00000.0084R-squared Adjusted R-squaredS.E. of regression Sum squar

20、ed resid Log likelihoodDurbin-Watson stat0.9937250.9930280.0470070.03977436.027421.479333Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statisticProb(F-statistic)4.5598230.562953-3.145469-2.9962511425.2190.000000回歸方程: ln Yt = -1.078046 + 0.904522 ln Xt + 0.260033ln Yt

21、-1(0.184144) (0.111243)t= (-5.854366) (8.131039)(0.087799)(2.961684)R2 =0.993725F=1425.219DW1=1.479333根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有l(wèi)n a * = d ln a , b * = db , b = 1- d*01將上述估計結(jié)果代入得到:d = 1- b = 1- 0.260033 = 0.739967*1lna *db *lna = -1.45688b = 1.222380d= -1.45688 +1.22238ln X故局部調(diào)整模型估計結(jié)果為: ln Y *,也即ttY * = 0.2329

22、61X 1.22238tt意義:該地區(qū)銷售額每增加 1%,未來預(yù)期最佳新增固定資產(chǎn)投資為 1.22238%。運用德賓 h 檢驗一階自相關(guān):h = (1- d )n= (1- 1.479333)21= 1.303131- nVar(b )*1- 21´ 0.0877992221在顯著性水平a = 0.05 上,查標(biāo)準(zhǔn)正態(tài)分布表得臨界值 ha = 1.96 ,由于2= 1.96 ,則接收原假設(shè) r = 0 ,說明自回歸模型不存在= 1.30313 < ha2h一階自相關(guān)。Y = a * + b X + b Y+ u*0t1 t -1t3)在自適應(yīng)預(yù)期假定下,先估計一階自回歸模型:

23、回歸的估計結(jié)果如下,Dependent Variable: YMethod: Least SquarestDate: 25/02/10Time: 22:42Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C XY(-1)-15.104030.6292730.2716764.7294500.0978190.114858-3.1936136.4330312.3653150.00500.00000.0294R-squa

24、red Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoodDurbin-Watson stat0.9871250.9856956.193728690.5208-66.473411.518595Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statisticProb(F-statistic)109.216751.785506.6165156.765733690.05610.000000回歸方程: Yt

25、 = -15.10403 + 0.629273Xt + 0.271676Yt -1(4.729450) (0.097819)(0.114858)t = (-3.193613) (6.433031) (2.365315)R2 =0.987125F=690.0561DW=1.518595根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有a* = da b * = db b = 1-du = d u*01tt將上述估計結(jié)果代入得到:d = 1- b = 1- 0.271676 = 0.728324*1a = a * = -20.738064b = b=*00.864001dd故局部調(diào)整模型估計結(jié)果為: Y * = -2

26、0.738064 + 0.864001Xtt意義:該地區(qū)銷售額每增加 1 億元,未來預(yù)期最佳新增固定資產(chǎn)投資為 0.864001 億元。運用德賓 h 檢驗一階自相關(guān):h = (1- d )n= (1- 1 ´1.518595)221= 1.29728 在顯著1- nVar(b )*1-21´ 0.114858221a = 0.05表 得 臨 界 值 ha = 1.96 , 由 于2性 水 平上 , 查 標(biāo) 準(zhǔn) 正 態(tài) 分 布= 1.29728 < ha = 1.96 ,則接收原假設(shè) r = 0 ,說明自回歸模型不存在一階自相關(guān)。2h7.4 表 7.12 給出某地區(qū)各年

27、末貨幣流通量 Y,商品零售額 X1、城鄉(xiāng)居民儲蓄余額 X2 的數(shù)據(jù)。表 7.12 某地區(qū)年末貨幣流通量、商品零售額、城鄉(xiāng)居民儲蓄余額數(shù)據(jù)(:億元)年份年末貨幣商品零城鄉(xiāng)居民儲年份年末貨幣商品零城鄉(xiāng)居民利用表中數(shù)據(jù)設(shè)定模型: Y = a + b X + b X+ m*t1 1t2 2ttY = a XXeb 1b 2 u*tt1t2t其中,Y * 為長期(或所需求的)貨幣流通量。試根據(jù)局部調(diào)整假設(shè),作模型變換,估計并檢驗t參數(shù),對參數(shù)意義做出解釋?!揪毩?xí)題 7.4 參考解答】1)在局部調(diào)整假定下,先估計一階自回歸模型:Y = a* + b X+ b X*t01t1回歸的估計結(jié)果如下:Depend

28、ent Variable: YMethod: Least SquaresDate: 26/02/10Time: 15:56Sample (adjusted): 1954 1985Included observations: 32 after adjustments流通量Y售額X1蓄余額X2流通量Y售額X1儲蓄余額X2195310518786764163197038500240332261561954488819714710027453430944195556891972572002991973596119567406197360000314006396671957915619746250031

29、895443320195810193197564500336015461841959225581976680003529244831119602903619776300037811553313196141472197866000415830612901962348261979760004520327003319633000019808500051254392800196424300198190000547956109707196529300198210100059108813379919663390019831000006464271643141967361001984160000733162

30、2011991968396001985192000919045277185VariableCoefficientStd. Errort-StatisticProb.C X1 X2Y(-1)6596.2280.0474510.2748380.4052754344.0780.0396100.0905340.1872201.5184421.1979403.0357362.1646990.14010.24100.00510.0391R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoodDurbin-

31、Watson stat0.9672470.9637387705.6041.66E+09-329.66002.109534Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statisticProb(F-statistic)55355.9740464.9020.8537521.03697275.62670.000000回歸方程: Yt= 6596.228 + 0.047451X1t + 0.274838X 2t + 0.405275Yt -1(4344.078) (0.039610)(0.0

32、90534)t = (1.518442) (1.197940)(3.035736)(0.187220)(2.164699)R2 =0.967247F=275.6267DW=2.109534根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有l(wèi)na* = d lna, b= db ,b= db ,b =1-d*00112將上述估計結(jié)果代入得到:ln Y ln Y = a* +b ln X + b ln X+ b ln Yd =1- b =1- 0.405275 = 0.594725*t -1tt01t12t22a = a * =b =b =11091.223670.079780.462126bb* 0 1 d0d1d

33、故局部調(diào)整模型估計結(jié)果為:Y * = 11091.22367 + 0.07978X + 0.462126Xt1t意義:在其他條件不變的情況下,該地區(qū)2t商品零售額每增加 1 億元,則預(yù)期年末貨幣流通量增加 0.07978 億元。同樣,在其他條件不變的情況下,該地區(qū)城鄉(xiāng)居民儲蓄余額每增加 1 億元,則預(yù)期年末貨幣流通量增加 0.462126 億元。lnY = lna + b ln X+ b ln X+ u*2)先對數(shù)變換模型形式,t11t22tt在局部調(diào)整假定下,先估計一階自回歸模型:ln Y = a* + b ln X + b ln X+ b lnY+ u*2t2t -1tt01t1回歸的估計

34、結(jié)果如下:Dependent Variable: LNYMethod: Least SquaresDate: 26/02/10Time: 16:12Sample (adjusted): 1954 1985Included observations: 32 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C LNX1 LNX2LNY(-1)0.6443330.2062300.1801680.5314451.6778880.2555570.1549130.1092600.3840140.8069841.1630314.86

35、40490.70390.42650.25460.0000R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoodDurbin-Watson stat0.9689590.9656330.1246290.43490523.367781.914829Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statisticProb(F-statistic)10.700880.672279-1.2104

36、86-1.027269291.34580.000000回歸方程: ln Yt = 0.644333 + 0.20623ln X1t + 0.180168ln X 2t + 0.531445ln Yt -1(1.677888) (0.255557)t = (0.384014) (0.806984)(0.154913)(1.163013)(0.531445)(4.864049)R2 =0.968959F=291.3458DW=1.914829根據(jù)局部調(diào)整模型的參數(shù)關(guān)系,有l(wèi)na = d lna ,b= db ,b = dbb =1-d*,00112將上述估計結(jié)果代入得到:d =1- b =1- 0

37、.531445 = 0.468555*2lna *db *b *lna = 1.375149 b0 = 0 = 0.44014b1 = 1 = 0.384518dd故局部調(diào)整模型估計結(jié)果為:ln Y * = 1.375149 + 0.44014 ln X + 0.384518 ln Xt1t2t意義:貨幣需求對商品零售額的長期彈性為:0.44104;貨幣需求對城鄉(xiāng)居民儲蓄余額的長期彈性為0.384518。7.5 考慮如下回歸模型:Y= -3012 + 0.1408X + 0.2306 Xt -1ttt =(-6.27) (2.6)R2 = 0.727其中,y 為通貨膨脹率,x 為生產(chǎn)設(shè)備使用率

38、。(4.26)1) 生產(chǎn)設(shè)備使用率對通貨膨脹率的短期影響和總的影響分別是多大?2) 如果庫伊克模型為Yt = b1 + b2 Xt + b3Yt -1 + mt ,你怎樣得到生產(chǎn)設(shè)備使用率對通貨膨脹率的短期影響和長期影響?【練習(xí)題 7.5 參考解答】1)該模型為有限分布滯后模型,故生產(chǎn)設(shè)備使用率對通貨膨脹的短期影響為 0.1408,總的影響為 0.1408+0.2306=0.3714。YY2 ) 利 用 工 具 變 量 法 , 用來 代 替進 行 估 計 , 則 庫 伊 克 模 型 變 換 為t -1t -1Y = b + b X + b Y+ u 。若原先有Y= a + a X + a X,

39、則需估計的模型為t12t3t -1t12t3 t -1tYt = b1 + a1 + (b2 + a2 )Xt + (b3 + a3 )Xt -1 + ut ,所以生產(chǎn)設(shè)備使用率對通貨膨脹的短期影響+ a2,總的影響為b2 + a2 + (b3 + a3 ) 。為 b2表 7.13 中給出了某地區(qū)消費總額 Y 和貨幣收入總額 X 的年度資料。7.6表 7.13某地區(qū)消費總額 Y(億元)和貨幣收入總額 X(億元)的年度資料(:億元)分析該地區(qū)消費同收入的關(guān)系1) 做Yt 關(guān)于 Xt 的回歸,對回歸結(jié)果進行分析;2) 建立適當(dāng)?shù)姆植紲竽P?,用庫伊克變換轉(zhuǎn)換為庫伊克模型后進行估計,并對估計結(jié)果進行

40、分析。年份XY年份XY1975103.16991.1581990215.539204.751976115.07109.11991220.391218.6661977132.21119.1871992235.483227.4251978156.574143.9081993280.975229.861979166.091155.1921994292.339244.231980155.099148.6731995278.116258.3631981138.175151.2881996292.654275.2481982146.936148.11997341.442299.2771983157.715

41、6.7771998401.141345.471984179.797168.4751999458.567406.1191985195.779174.7372000500.915462.2231986194.858182.8022001450.939492.6621987189.179180.132002626.709539.0461988199.963190.4442003783.953617.5681989205.717196.92004890.637727.397【練習(xí)題 7.6 參考解答】1)做Yt 關(guān)于 Xt 的回歸,回歸的估計結(jié)果如下,Dependent Variable: Y Method: Least SquaresDate: 05/03/10Time: 15:24Sample: 1975 2004Included observations: 30VariableCoefficientStd. Errort-StatisticProb.CX27.765940.8077317.9450830.0228403.49473335.365420.00160.0000R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論