電磁場(chǎng)點(diǎn)電荷電場(chǎng)線電勢(shì)MATLAB仿真中南大學(xué)_第1頁(yè)
電磁場(chǎng)點(diǎn)電荷電場(chǎng)線電勢(shì)MATLAB仿真中南大學(xué)_第2頁(yè)
電磁場(chǎng)點(diǎn)電荷電場(chǎng)線電勢(shì)MATLAB仿真中南大學(xué)_第3頁(yè)
電磁場(chǎng)點(diǎn)電荷電場(chǎng)線電勢(shì)MATLAB仿真中南大學(xué)_第4頁(yè)
電磁場(chǎng)點(diǎn)電荷電場(chǎng)線電勢(shì)MATLAB仿真中南大學(xué)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、電磁場(chǎng)理論 實(shí)驗(yàn)一利用Matlab模擬點(diǎn)電荷電場(chǎng)的分布1 實(shí)驗(yàn)?zāi)康模? 熟悉單個(gè)點(diǎn)電荷及一對(duì)點(diǎn)電荷的電場(chǎng)分布情況;2 學(xué)會(huì)使用Matlab進(jìn)行數(shù)值計(jì)算,并繪出相應(yīng)的圖形;2 實(shí)驗(yàn)原理:根據(jù)庫(kù)倫定律:在真空中,兩個(gè)靜止點(diǎn)電荷之間的作用力與這兩個(gè)電荷的電量乘積成正比,與它們之間距離的平方成反比,作用力的方向在兩個(gè)電荷的連線上,兩電荷同號(hào)為斥力,異號(hào)為吸力,它們之間的力F滿足: (式1)由電場(chǎng)強(qiáng)度E的定義可知: (式2)對(duì)于點(diǎn)電荷,根據(jù)場(chǎng)論基礎(chǔ)中的定義,有勢(shì)場(chǎng)E的勢(shì)函數(shù)為 (式3)而 (式4) 在Matlab中,由以上公式算出各點(diǎn)的電勢(shì)U,電場(chǎng)強(qiáng)度E后,可以用Matlab自帶的庫(kù)函數(shù)繪出相應(yīng)電荷的電

2、場(chǎng)分布情況. 三.實(shí)驗(yàn)內(nèi)容:1. 單個(gè)點(diǎn)電荷點(diǎn)電荷的平面電力線和等勢(shì)線真空中點(diǎn)電荷的場(chǎng)強(qiáng)大小是E=kq /r2 ,其中k 為靜電力恒量, q 為電量, r 為點(diǎn)電荷到場(chǎng)點(diǎn)P(x,y)的距離.電場(chǎng)呈球?qū)ΨQ分布, 取電量q> 0, 電力線是以電荷為起點(diǎn)的射線簇.以無(wú)窮遠(yuǎn)處為零勢(shì)點(diǎn), 點(diǎn)電荷的電勢(shì)為U=kq /r,當(dāng)U 取常數(shù)時(shí), 此式就是等勢(shì)面方程.等勢(shì)面是以電荷為中心以r 為半徑的球面.l 平面電力線的畫(huà)法在平面上, 電力線是等角分布的射線簇, 用MATLAB 畫(huà)射線簇很簡(jiǎn)單.取射線的半徑為( 都取國(guó)際制單位) r0=0.12, 不同的角度用向量表示( 單位為弧度) th=linspace

3、(0,2*pi,13).射線簇的終點(diǎn)的直角坐標(biāo)為: x,y=pol2cart(th,r0).插入x 的起始坐標(biāo)x=x; 0.1*x.同樣插入y 的起始坐標(biāo), y=y; 0.1*y, x 和y 都是二維數(shù)組, 每一列是一條射線的起始和終止坐標(biāo).用二維畫(huà)線命令plot(x,y)就畫(huà)出所有電力線.l 平面等勢(shì)線的畫(huà)法在過(guò)電荷的截面上, 等勢(shì)線就是以電荷為中心的圓簇, 用MATLAB 畫(huà)等勢(shì)線更加簡(jiǎn)單.靜電力常量為k=9e9, 電量可取為q=1e- 9; 最大的等勢(shì)線的半徑應(yīng)該比射線的半徑小一點(diǎn)? r0=0.1.其電勢(shì)為u0=k8q /r0.如果從外到里取7 條等勢(shì)線, 最里面的等勢(shì)線的電勢(shì)是最外面的

4、3 倍, 那么各條線的電勢(shì)用向量表示為: u=linspace(1,3,7)*u0.從- r0 到r0 取偶數(shù)個(gè)點(diǎn), 例如100 個(gè)點(diǎn), 使最中心點(diǎn)的坐標(biāo)繞過(guò)0, 各點(diǎn)的坐標(biāo)可用向量表示: x=linspace(- r0,r0,100), 在直角坐標(biāo)系中可形成網(wǎng)格坐標(biāo): X,Y=meshgrid(x).各點(diǎn)到原點(diǎn)的距離為: r=sqrt(X.2+Y.2), 在乘方時(shí), 乘方號(hào)前面要加點(diǎn), 表示對(duì)變量中的元素進(jìn)行乘方計(jì)算.各點(diǎn)的電勢(shì)為U=k8q. /r, 在進(jìn)行除法運(yùn)算時(shí), 除號(hào)前面也要加點(diǎn), 同樣表示對(duì)變量中的元素進(jìn)行除法運(yùn)算.用等高線命令即可畫(huà)出等勢(shì)線contour(X,Y,U,u), 在畫(huà)

5、等勢(shì)線后一般會(huì)把電力線擦除, 在畫(huà)等勢(shì)線之前插入如下命令hold on 就行了.平面電力線和等勢(shì)線如圖1, 其中插入了標(biāo)題等等.越靠近點(diǎn)電荷的中心, 電勢(shì)越高, 電場(chǎng)強(qiáng)度越大, 電力線和等勢(shì)線也越密.圖1l 點(diǎn)電荷的立體電力線和等勢(shì)面立體電力線的畫(huà)法先形成三維單位球面坐標(biāo), 繞z 軸一周有8 條電力線X,Y,Z=sphere(8),每維都是9×9 的網(wǎng)格矩陣, 將X 化為行向量, 就形成各條電力線的終點(diǎn)x 坐標(biāo)x=r0=X(:), 其他兩個(gè)坐標(biāo)也可同樣形成終點(diǎn)坐標(biāo)y=r0+Y(:)' , z=r0+Z(:)' .對(duì)x坐標(biāo)插入原點(diǎn)x=x(zeros(size(x), 其

6、他兩個(gè)坐標(biāo)如下形成y=y(zeros(size(y), z=z(zeros(size(z), 用三維畫(huà)線命令plot3(x,y,z), 就畫(huà)出所有電力線.l 立體等勢(shì)面的畫(huà)法畫(huà)5 條等勢(shì)面時(shí), 各面的電勢(shì)為u=linspace(1,3,5)+u0, 各等勢(shì)面的半徑為r=k6q. /u, 其中第一個(gè)球面的半徑為rr=r(1).三維單位球面的坐標(biāo)可由X,Y,Z=sphere 命令形成, 每維都是21×21 的網(wǎng)格矩陣, 由于外球會(huì)包圍內(nèi)球, 因此把球面的四分之一設(shè)為非數(shù), 表示割去該部分Z(X<0&Y<0)=nan. 用曲面命令可畫(huà)出第一個(gè)曲面surf(rr6X,rr

7、6Y,rr6Z), 只要取不同的半徑就能畫(huà)出不同的等勢(shì)面.為了使等勢(shì)面好看, 可設(shè)置一個(gè)顏色濃淡連續(xù)變化的命令shading interp.點(diǎn)電荷的立體電力線和等勢(shì)面如圖2, 旋轉(zhuǎn)圖片可從不同的角度觀察.圖22 一對(duì)點(diǎn)電荷l 平面等勢(shì)線的畫(huà)法仍然用MATLAB 的等高線命令畫(huà)等勢(shì)線.對(duì)于正負(fù)兩個(gè)點(diǎn)電荷, 電量不妨分別取q1=2e- 9,q2=- 1e- 9, 正電荷在x 軸正方, 負(fù)電荷在x 軸負(fù)方, 它們到原點(diǎn)的距離定為a=0.02; 假設(shè)平面范圍為xx0=0.05,yy0=0.04, 兩個(gè)坐標(biāo)向量分別x=linspace(- xx0,xx0,20)和y=linspace(- yy0,yy0

8、,50).設(shè)置平面網(wǎng)格坐標(biāo)為X,Y=meshgrid(x), 各點(diǎn)到兩電荷的距離分別為r1=sqrt(X- a).2+Y.2)和r2=sqrt(X+a).2+Y.2).各點(diǎn)的電勢(shì)為U=k6q1. /r1+k6q2. /r2, 取最高電勢(shì)為u0=50, 最低電勢(shì)取其負(fù)值.在兩者之間取11 個(gè)電勢(shì)向量u=linspace (u0,- u0,11), 等高線命令contour(X,Y,U,u,'k- ' )用黑實(shí)線, 畫(huà)出等勢(shì)線如圖4所示, 其中, 左邊從里到外的第6 條包圍負(fù)電荷的等勢(shì)線為零勢(shì)線.l 平面電力線的畫(huà)法利用MATLAB 的箭頭命令, 可用各點(diǎn)的電場(chǎng)強(qiáng)度方向代替電力線.

9、根據(jù)梯度可求各點(diǎn)的場(chǎng)強(qiáng)的兩個(gè)分量Ex,Ey=gradient(- U),合場(chǎng)強(qiáng)為E=sqrt(Ex.2+Ey.2).為了使箭頭等長(zhǎng), 將場(chǎng)強(qiáng)Ex=Ex. /E,Ey=Ey. /E 歸一化, 用箭頭命令quiver(X,Y,Ex,Ey)可標(biāo)出各網(wǎng)點(diǎn)的電場(chǎng)強(qiáng)度的方向,異號(hào)點(diǎn)電荷對(duì)的場(chǎng)點(diǎn)方向如圖3 所示.為了畫(huà)出連續(xù)的電力線, 先確定電力線的起點(diǎn).電荷的半徑可取為r0=0.002, 如圖4 所示, 假設(shè)第一條電力線的起始角為30 度, 其弧度為q=30+pi /180, 起始點(diǎn)到第一個(gè)點(diǎn)電荷的坐標(biāo)為x1=r0+cos(q),y=r0+sin(q), 到第二個(gè)點(diǎn)電荷的坐標(biāo)只有橫坐標(biāo)x2=2+a+x1

10、不同.用前面的方法可求出該點(diǎn)到兩個(gè)電荷之間的距離r1 和r2, 從而計(jì)算場(chǎng)強(qiáng)的兩個(gè)分量以及總場(chǎng)強(qiáng)Ex=q1+x1 /r13 +q2+x2 /r23, Ey=q1+y/r13+q2+y/r23, E=sqrt(Ex6Ex+Ey6Ey).下面只要用到場(chǎng)強(qiáng)分量與總場(chǎng)強(qiáng)的比值, 在計(jì)算場(chǎng)強(qiáng)分量時(shí)沒(méi)有乘以靜電力常量k.由于電力線的方向與場(chǎng)強(qiáng)的切線方向相同, 取線段為s=0.0001,由此可求出終點(diǎn)的坐標(biāo)為x1=x1+s#Ex/E,y=y+s+Ey/E, 從而計(jì)算x2.以終點(diǎn)為新的起點(diǎn)就能計(jì)算其他終點(diǎn).當(dāng)終點(diǎn)出界時(shí)或者到達(dá)另一點(diǎn)電荷時(shí), 這個(gè)終點(diǎn)可作為最后終點(diǎn). 這種計(jì)算電力線的方法稱為切線法.圖3圖4圖

11、5部分M-file;1. 點(diǎn)電荷的平面電力線和等勢(shì)線%點(diǎn)電荷的平面電力線和等勢(shì)線%平面電力線的畫(huà)法q=1e-9;r0=0.12;th=linspace(0,2*pi,13);x,y=pol2cart(th,r0);x=x;0.1*x;y=y;0.1*y;plot(x,y);grid onhold onplot(0,0,'o','MarkerSize',12)xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('單個(gè)點(diǎn)電荷的電場(chǎng)線與等

12、勢(shì)線','fontsize',20)%平面等勢(shì)線的畫(huà)法k=9e9;r0=0.1;u0=k*q/r0;u=linspace(1,3,7)*u0;x=linspace(-r0,r0,100);X,Y=meshgrid(x);r=sqrt(X.2+Y.2);U=k*q./r;hold on;contour(X,Y,U,u)2. 一對(duì)電荷平面等勢(shì)線和電場(chǎng)線圖%一對(duì)電荷平面等勢(shì)線和電場(chǎng)線圖clear all;clf;%平面等勢(shì)線的畫(huà)法q1=2e-9;q2=-1e-9;a=0.02;%到原點(diǎn)的距離xx0=0.05;yy0=0.04;k=9e9;x=linspace(-xx0,xx0

13、,20);y=linspace(-yy0,yy0,50);X,Y=meshgrid(x);r11=sqrt(xx0/1.7-a)2+(yy0/1.7)2); r22=sqrt(xx0/1.7+a)2+(yy0/1.7)2);r1=sqrt(X-a).2+Y.2); %各點(diǎn)到點(diǎn)電荷的距離r2=sqrt(X+a).2+Y.2);U=k*q1./r1+k*q2./r2; %各點(diǎn)的電勢(shì)u0=k*q1/r11+k*q2/r22;u=linspace(u0,-u0,11); %取21個(gè)等勢(shì)向量contour(X,Y,U,u,'k-');hold ongrid onplot(a,0,'

14、;o','MarkerSize',12);plot(-a,0,'o','MarkerSize',12);xlabel('x','fontsize',16);ylabel('y','fontsize',16);%平面電力線的畫(huà)法Ex,Ey=gradient(-U);E=sqrt(Ex.2+Ey.2);Ex=Ex./E;Ey=Ey./E;hold on;quiver(X,Y,Ex,Ey);title('一對(duì)不相等的電荷的等勢(shì)線圖和電場(chǎng)線圖','fontsi

15、ze',20)clear;3. 立體電力線的畫(huà)法%立體電力線的畫(huà)法q=1e-9;X,Y,Z=sphere(8);r0=0.18;r1=0.2;k=9e9;u0=k*q/r0;x=r1*X(:)'y=r1*Y(:)'z=r1*Z(:)'x=x;zeros(size(x);y=y;zeros(size(y);z=z;zeros(size(z);plot3(x,y,z)hold on;%立體等勢(shì)線之畫(huà)法u=linspace(1,3,5)*u0; %畫(huà)5 條等勢(shì)面時(shí), 各面的電勢(shì)為u=linspace(1,3,5)+u0,r=k*q./u; %各等勢(shì)面的半徑為r=k6q

16、. /uX,Y,Z=sphere;Z(X<0&Y<0)=nan;surf(r(1)*X,r(1)*Y,r(1)*Z); %第一到第五個(gè)球面surf(r(2)*X,r(2)*Y,r(2)*Z);surf(r(3)*X,r(3)*Y,r(3)*Z);surf(r(4)*X,r(4)*Y,r(4)*Z);surf(r(5)*X,r(5)*Y,r(5)*Z);shading interp %個(gè)顏色濃淡連續(xù)變化的命令shading interp.xlabel('x','fontsize',16);ylabel('y','font

17、size',16);zlabel('z','fontsize',16);title('正電荷電場(chǎng)線等勢(shì)面的三維圖形','fontsize',20);clear;4.clear all;clf;q1=1;q2=1;a=0.02;xx0=0.05;yy0=0.04;k=9e9;x=linspace(-xx0,xx0,20);y=linspace(-yy0,yy0,50);X,Y=meshgrid(x);r11=sqrt(xx0/1.7-a)2+(yy0/1.7)2);r22=sqrt(xx0/1.7+a)2+(yy0/1.7)

18、2);r1=sqrt(X-a).2+Y.2);r2=sqrt(X+a).2+Y.2);U=k*q1./r1+k*q2./r2;u0=k*q1/r11+k*q2/r22;u=linspace(u0,-u0,11);contour(X,Y,U,u,'k-');hold onEx,Ey=gradient(-U);E=sqrt(Ex.2+Ey.2);Ex=Ex./E;Ey=Ey./E;dth1=20;th1=(dth1:dth1:180-dth1)*pi/180;r0=a/5;x1=r0*cos(th1)+a;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1

19、,y1);streamline(-X,-Y,-Ex,-Ey,x1,-y1);q=abs(q1/q2);dth2=dth1/q;th2=(180-dth2:-dth2:dth2)*pi/180;x2=r0*cos(th2)-a;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);streamline(X,-Y,Ex,-Ey,x2,-y2);grid onplot(a,0,'o','MarkerSize',12);plot(-a,0,'o','MarkerSize',12);xlabel('x

20、','fontsize',16);ylabel('y','fontsize',16);title('一對(duì)點(diǎn)電荷的電場(chǎng)分布圖');clear;clear all;clf;q1=1;q2=1;a=0.02;xx0=0.05;yy0=0.04;k=9e9;x=linspace(-xx0,xx0,20);y=linspace(-yy0,yy0,50);X,Y=meshgrid(x);r11=sqrt(xx0/1.7-a)2+(yy0/1.7)2);r22=sqrt(xx0/1.7+a)2+(yy0/1.7)2);r1=sqrt(X-a).2+Y.2);r2=sqrt(X+a).2+Y.2);U=k*q1./r1+k*q2./r2;u0=k*q1/r11+k*q2/r22;u=linspace(u0,-u0,11);contour(X,Y,U,u,'k-');hold onEx,Ey=gradient(-U);E=sqrt(Ex.2+Ey.2);Ex=Ex./E;Ey=E

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論