高中數(shù)學解題基本方法——換元法_第1頁
高中數(shù)學解題基本方法——換元法_第2頁
高中數(shù)學解題基本方法——換元法_第3頁
高中數(shù)學解題基本方法——換元法_第4頁
高中數(shù)學解題基本方法——換元法_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高中數(shù)學解題基本方法換元法解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法。換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來?;蛘咦?yōu)槭煜さ男问?,把復雜的計算和推證簡化。它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。換元的方法有:局部換

2、元、三角換元、均值換元等。局部換元又稱整體換元,是在已知或者未知中,某個代數(shù)式幾次出現(xiàn),而用一個字母來代替它從而簡化問題,當然有時候要通過變形才能發(fā)現(xiàn)。例如解不等式:4220,先變形為設2t(t>0),而變?yōu)槭煜さ囊辉尾坏仁角蠼夂椭笖?shù)方程的問題。三角換元,應用于去根號,或者變換為三角形式易求時,主要利用已知代數(shù)式中與三角知識中有某點聯(lián)系進行換元。如求函數(shù)y的值域時,易發(fā)現(xiàn)x0,1,設xsin ,0,,問題變成了熟悉的求三角函數(shù)值域。為什么會想到如此設,其中主要應該是發(fā)現(xiàn)值域的聯(lián)系,又有去根號的需要。如變量x、y適合條件xyr(r>0)時,則可作三角代換xrcos、yrsin化為

3、三角問題。均值換元,如遇到xyS形式時,設xt,yt等等。我們使用換元法時,要遵循有利于運算、有利于標準化的原則,換元后要注重新變量范圍的選取,一定要使新變量范圍對應于原變量的取值范圍,不能縮小也不能擴大。如上幾例中的t>0和0,。、再現(xiàn)性題組:1.ysinx·cosxsinx+cosx的最大值是_。2.設f(x1)log(4x) (a>1),則f(x)的值域是_。3.已知數(shù)列a中,a1,a·aaa,則數(shù)列通項a_。4.設實數(shù)x、y滿足x2xy10,則xy的取值范圍是_。5.方程3的解是_。6.不等式log(21) ·log(22)2的解集是_?!竞喗?/p>

4、】1小題:設sinx+cosxt,,則yt,對稱軸t1,當t,y;2小題:設x1t (t1),則f(t)log-(t-1)4,所以值域為(,log4;3小題:已知變形為1,設b,則b1,b1(n1)(-1)n,所以a;4小題:設xyk,則x2kx10, 4k40,所以k1或k1;5小題:設3y,則3y2y10,解得y,所以x1;6小題:設log(21)y,則y(y1)<2,解得2<y<1,所以x(log,log3)。、示范性題組:例1. 實數(shù)x、y滿足4x5xy4y5 ( 式) ,設Sxy,求的值。(93年全國高中數(shù)學聯(lián)賽題)【分析】 由Sxy聯(lián)想到cossin1,于是進行三

5、角換元,設代入式求S和S的值?!窘狻吭O代入式得: 4S5S·sincos5 解得 S ; -1sin21 385sin213 此種解法后面求S最大值和最小值,還可由sin2的有界性而求,即解不等式:|1。這種方法是求函數(shù)值域時經(jīng)常用到的“有界法”。【另解】 由Sxy,設xt,yt,t, 則xy±代入式得:4S±5=5, 移項平方整理得 100t+39S160S1000 。 39S160S1000 解得:S 【注】 此題第一種解法屬于“三角換元法”,主要是利用已知條件Sxy與三角公式cossin1的聯(lián)系而聯(lián)想和發(fā)現(xiàn)用三角換元,將代數(shù)問題轉(zhuǎn)化為三角函數(shù)值域問題。第二種

6、解法屬于“均值換元法”,主要是由等式Sxy而按照均值換元的思路,設xt、yt,減少了元的個數(shù),問題且容易求解。另外,還用到了求值域的幾種方法:有界法、不等式性質(zhì)法、分離參數(shù)法。和“均值換元法”類似,我們還有一種換元法,即在題中有兩個變量x、y時,可以設xab,yab,這稱為“和差換元法”,換元后有可能簡化代數(shù)式。本題設xab,yab,代入式整理得3a13b5 ,求得a0,,所以S(ab)(ab)2(ab)a,,再求的值。例2 ABC的三個內(nèi)角A、B、C滿足:AC2B,求cos的值。(96年全國理)【分析】 由已知“AC2B”和“三角形內(nèi)角和等于180°”的性質(zhì),可得 ;由“AC120

7、°”進行均值換元,則設 ,再代入可求cos即cos。【解】由ABC中已知AC2B,可得 ,由AC120°,設,代入已知等式得:2,解得:cos, 即:cos?!玖斫狻坑葾C2B,得AC120°,B60°。所以2,設m,m ,所以cosA,cosC,兩式分別相加、相減得:cosAcosC2coscoscos,cosAcosC2sinsinsin,即:sin,代入sincos1整理得:3m16m120,解出m6,代入cos。【注】 本題兩種解法由“AC120°”、“2”分別進行均值換元,隨后結(jié)合三角形角的關(guān)系與三角公式進行運算,除由已知想到均值換元

8、外,還要求對三角公式的運用相當熟練。假如未想到進行均值換元,也可由三角運算直接解出:由AC2B,得AC120°,B60°。所以2,即cosAcosC2cosAcosC,和積互化得:2coscoscos(A+C)cos(A-C),即coscos(A-C)(2cos1),整理得:4cos2cos30,解得:cos y , , x例3. 設a>0,求f(x)2a(sinxcosx)sinx·cosx2a的最大值和最小值。【解】 設sinxcosxt,則t-,,由(sinxcosx)12sinx·cosx得:sinx·cosx f(x)g(t)(

9、t2a) (a>0),t-,t-時,取最小值:2a2a當2a時,t,取最大值:2a2a ;當0<2a時,t2a,取最大值: 。 f(x)的最小值為2a2a,最大值為。【注】 此題屬于局部換元法,設sinxcosxt后,抓住sinxcosx與sinx·cosx的內(nèi)在聯(lián)系,將三角函數(shù)的值域問題轉(zhuǎn)化為二次函數(shù)在閉區(qū)間上的值域問題,使得容易求解。換元過程中一定要注意新的參數(shù)的范圍(t-,)與sinxcosx對應,否則將會出錯。本題解法中還包含了含參問題時分類討論的數(shù)學思想方法,即由對稱軸與閉區(qū)間的位置關(guān)系而確定參數(shù)分兩種情況進行討論。一般地,在遇到題目已知和未知中含有sinx與c

10、osx的和、差、積等而求三角式的最大值和最小值的題型時,即函數(shù)為f(sinx±cosx,sinxcsox),經(jīng)常用到這樣設元的換元法,轉(zhuǎn)化為在閉區(qū)間上的二次函數(shù)或一次函數(shù)的研究。例4. 設對所于有實數(shù)x,不等式xlog2x loglog>0恒成立,求a的取值范圍。(87年全國理)【分析】不等式中l(wèi)og、 log、log三項有何聯(lián)系?進行對數(shù)式的有關(guān)變形后不難發(fā)現(xiàn),再實施換元法?!窘狻?設logt,則loglog3log3log3t,log2log2t,代入后原不等式簡化為(3t)x2tx2t>0,它對一切實數(shù)x恒成立,所以:,解得 t<0即log<00<

11、<1,解得0<a<1?!咀ⅰ繎镁植繐Q元法,起到了化繁為簡、化難為易的作用。為什么會想到換元及如何設元,關(guān)鍵是發(fā)現(xiàn)已知不等式中l(wèi)og、 log、log三項之間的聯(lián)系。在解決不等式恒成立問題時,使用了“判別式法”。另外,本題還要求對數(shù)運算十分熟練。一般地,解指數(shù)與對數(shù)的不等式、方程,有可能使用局部換元法,換元時也可能要對所給的已知條件進行適當變形,發(fā)現(xiàn)它們的聯(lián)系而實施換元,這是我們思考解法時要注意的一點。例5. 已知,且 (式),求的值。【解】 設k,則sinkx,cosky,且sincosk(x+y)1,代入式得: 即:設t,則t , 解得:t3或 ±或±

12、【另解】 由tg,將等式兩邊同時除以,再表示成含tg的式子:1tgtg,設tgt,則3t10t30,t3或, 解得±或±?!咀ⅰ?第一種解法由而進行等量代換,進行換元,減少了變量的個數(shù)。第二種解法將已知變形為,不難發(fā)現(xiàn)進行結(jié)果為tg,再進行換元和變形。兩種解法要求代數(shù)變形比較熟練。在解高次方程時,都使用了換元法使方程次數(shù)降低。例6. 實數(shù)x、y滿足1,若xyk>0恒成立,求k的范圍?!痉治觥坑梢阎獥l件1,可以發(fā)現(xiàn)它與ab1有相似之處,于是實施三角換元?!窘狻坑?,設cos,sin,即: 代入不等式xyk>0得:3cos4sink>0,即k<3cos4

13、sin5sin(+) 所以k<-5時不等式恒成立。【注】本題進行三角換元,將代數(shù)問題(或者是解析幾何問題)化為了含參三角不等式恒成立的問題,再運用“分離參數(shù)法”轉(zhuǎn)化為三角函數(shù)的值域問題,從而求出參數(shù)范圍。一般地,在遇到與圓、橢圓、雙曲線的方程相似的代數(shù)式時,或者在解決圓、橢圓、雙曲線等有關(guān)問題時,經(jīng)常使用“三角換元法”。 y x xyk>0 k 平面區(qū)域本題另一種解題思路是使用數(shù)形結(jié)合法的思想方法:在平面直角坐標系,不等式axbyc>0 (a>0)所表示的區(qū)域為直線axbyc0所分平面成兩部分中含x軸正方向的一部分。此題不等式恒成立問題化為圖形問題:橢圓上的點始終位于平面上xyk>0的區(qū)域。即當直線xyk0在與橢圓下部相切的切線之下時。當直線與橢圓相切時,方程組有相等的一組實數(shù)解,消元后由0可求得k3,所以k<-3時原不等式恒成立。、鞏固性題組:1. 已知f(x)lgx (x>0),則f(4)的值為_。A. 2lg2 B. lg2 C. lg2 D. lg42. 函數(shù)y(x1)2的單調(diào)增區(qū)間是_。A. -2,+) B. -1,+) D. (-,+) C. (-,-13. 設等差數(shù)列a的公差d,且S145,則aaaa的值為_。A. 85 B. 72.5 C. 60 D. 52.54. 已知x4y4x,則xy的范圍是_。5. 已知a0,b0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論