2122公式法 (2)_第1頁(yè)
2122公式法 (2)_第2頁(yè)
2122公式法 (2)_第3頁(yè)
2122公式法 (2)_第4頁(yè)
2122公式法 (2)_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、21.221.2解一元二次方程解一元二次方程21.2.2公式法理解一元二次方程求根公式的推導(dǎo)過(guò)程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過(guò)程,引入ax2bxc0(a0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程重點(diǎn)求根公式的推導(dǎo)和公式法的應(yīng)用難點(diǎn)一元二次方程求根公式的推導(dǎo)一、復(fù)習(xí)引入1前面我們學(xué)習(xí)過(guò)解一元二次方程的“直接開(kāi)平方法”,比如,方程(1)x24(2)(x2)27提問(wèn)1這種解法的(理論)依據(jù)是什么?提問(wèn)2這種解法的局限性是什么?(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程)2面對(duì)這種局限性,怎么辦?(使

2、用配方法,把一般形式的二次方程配方成能夠“直接開(kāi)平方”的形式)二、探索新知用配方法解方程:(1)ax27x30(2)ax2bx30如果這個(gè)一元二次方程是一般形式ax2bxc0(a0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問(wèn)題三、鞏固練習(xí)教材第12頁(yè)練習(xí)1.(1)(3)(5)或(2)(4)(6)四、課堂小結(jié)本節(jié)課應(yīng)掌握:(1)求根公式的概念及其推導(dǎo)過(guò)程;(2)公式法的概念;(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a0;2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào);3)計(jì)算b24ac,若結(jié)果為負(fù)數(shù),方程無(wú)解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果(4)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論