數(shù)學(xué)必修1245知識(shí)點(diǎn)總結(jié)_第1頁(yè)
數(shù)學(xué)必修1245知識(shí)點(diǎn)總結(jié)_第2頁(yè)
數(shù)學(xué)必修1245知識(shí)點(diǎn)總結(jié)_第3頁(yè)
數(shù)學(xué)必修1245知識(shí)點(diǎn)總結(jié)_第4頁(yè)
數(shù)學(xué)必修1245知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、必修1數(shù)學(xué)基礎(chǔ)知識(shí)第一章、集合與函數(shù)概念§、集合1、 把研究的對(duì)象統(tǒng)稱(chēng)為元素,把一些元素組成的總體叫做集合。集合三要素:確定性、互異性、無(wú)序性。2、 只要構(gòu)成兩個(gè)集合的元素是一樣的,就稱(chēng)這兩個(gè)集合相等。3、 常見(jiàn)集合:正整數(shù)集合:或,整數(shù)集合:Z,有理數(shù)集合:Q,實(shí)數(shù)集合:R.4、集合的表示方法:列舉法、描述法.§、集合間的基本關(guān)系1、 一般地,對(duì)于兩個(gè)集合A、B,如果集合A中任意一個(gè)元素都是集合B中的元素,則稱(chēng)集合A是集合B的子集。記作.2、 如果集合,但存在元素,且,則稱(chēng)集合A是集合B的真子集.記作:AB.3、 把不含任何元素的集合叫做空集.記作:.并規(guī)定:空集合是任何

2、集合的子集.4、 如果集合A中含有n個(gè)元素,則集合A有個(gè)子集.§、集合間的基本運(yùn)算1、 一般地,由所有屬于集合A或集合B的元素組成的集合,稱(chēng)為集合A與B的并集.記作:.2、 一般地,由屬于集合A且屬于集合B的所有元素組成的集合,稱(chēng)為A與B的交集.記作:.3、全集、補(bǔ)集?§、函數(shù)的概念1、 設(shè)A、B是非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系,使對(duì)于集合A中的任意一個(gè)數(shù),在集合B中都有惟一確定的數(shù)和它對(duì)應(yīng),那么就稱(chēng)為集合A到集合B的一個(gè)函數(shù),記作:.2、 一個(gè)函數(shù)的構(gòu)成要素為:定義域、對(duì)應(yīng)關(guān)系、值域.如果兩個(gè)函數(shù)的定義域相同,并且對(duì)應(yīng)關(guān)系完全一致,則稱(chēng)這兩個(gè)函數(shù)相等.§

3、、函數(shù)的表示法1、 函數(shù)的三種表示方法:解析法、圖象法、列表法.§、單調(diào)性與最大(小)值1、 注意函數(shù)單調(diào)性證明的一般格式: 解:設(shè)且,則:=§、奇偶性1、 一般地,如果對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就稱(chēng)函數(shù)為偶函數(shù).偶函數(shù)圖象關(guān)于軸對(duì)稱(chēng).2、 一般地,如果對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就稱(chēng)函數(shù)為奇函數(shù).奇函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng).第二章、基本初等函數(shù)()§、指數(shù)與指數(shù)冪的運(yùn)算1、 一般地,如果,那么叫做 的次方根。其中.2、 當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.3、 我們規(guī)定: ;4、 運(yùn)算性質(zhì): ;.§、指數(shù)函數(shù)及其性質(zhì)1、 記住圖象:§

4、;、對(duì)數(shù)與對(duì)數(shù)運(yùn)算1、;2、.3、,.4、當(dāng)時(shí):;.5、換底公式:.6、 .§2.2.2、對(duì)數(shù)函數(shù)及其性質(zhì)1、 記住圖象:§2.3、冪函數(shù)1、幾種冪函數(shù)的圖象:第三章、函數(shù)的應(yīng)用§、方程的根與函數(shù)的零點(diǎn)1、方程有實(shí)根 函數(shù)的圖象與軸有交點(diǎn) 函數(shù)有零點(diǎn).2、 性質(zhì):如果函數(shù)在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有,那么,函數(shù)在區(qū)間內(nèi)有零點(diǎn),即存在,使得,這個(gè)也就是方程的根.§、用二分法求方程的近似解1、掌握二分法.§、幾類(lèi)不同增長(zhǎng)的函數(shù)模型§、函數(shù)模型的應(yīng)用舉例1、解決問(wèn)題的常規(guī)方法:先畫(huà)散點(diǎn)圖,再用適當(dāng)?shù)暮瘮?shù)擬合,最后檢驗(yàn).必修2

5、數(shù)學(xué)基礎(chǔ)知識(shí)1、空間幾何體的結(jié)構(gòu)常見(jiàn)的多面體有:棱柱、棱錐、棱臺(tái);常見(jiàn)的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺(tái)、球。棱柱:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。棱臺(tái):用一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺(tái)。2、空間幾何體的三視圖和直觀圖把光由一點(diǎn)向外散射形成的投影叫中心投影,中心投影的投影線交于一點(diǎn);把在一束平行光線照射下的投影叫平行投影,平行投影的投影線是平行的。3、空間幾何體的表面積與體積圓柱側(cè)面積;圓錐側(cè)面積:圓臺(tái)側(cè)面積:體積公式:;球的表面積和體積:.第二章:點(diǎn)、直線、平面之間的位置關(guān)系

6、1、公理1:如果一條直線上兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)。2、公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面。3、公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。4、公理4:平行于同一條直線的兩條直線平行.5、定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。6、線線位置關(guān)系:平行、相交、異面。7、線面位置關(guān)系:直線在平面內(nèi)、直線和平面平行、直線和平面相交。8、面面位置關(guān)系:平行、相交。9、線面平行:判定:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。性質(zhì):一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與

7、該直線平行。10、面面平行:判定:一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。性質(zhì):如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行。11、線面垂直:定義:如果一條直線垂直于一個(gè)平面內(nèi)的任意一條直線,那么就說(shuō)這條直線和這個(gè)平面垂直。判定:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。性質(zhì):垂直于同一個(gè)平面的兩條直線平行。12、面面垂直:定義:兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。判定:一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直。性質(zhì):兩個(gè)平面互相垂直,則一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。第三章:直線與方

8、程1、傾斜角與斜率:2、直線方程:點(diǎn)斜式:斜截式:兩點(diǎn)式:一般式:3、對(duì)于直線:有:;和相交;和重合;.4、對(duì)于直線:有:;和相交;和重合;.5、兩點(diǎn)間距離公式:6、點(diǎn)到直線距離公式:第四章:圓與方程1、圓的方程:標(biāo)準(zhǔn)方程:一般方程:.2、兩圓位置關(guān)系:外離:;外切:;相交:;內(nèi)切:;內(nèi)含:.3、空間中兩點(diǎn)間距離公式:必修4數(shù)學(xué)基礎(chǔ)知識(shí)第一章、三角函數(shù)§、任意角1、 正角、負(fù)角、零角、象限角的概念.2、 與角終邊相同的角的集合: .§、弧度制1、 把長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做1弧度的角.2、 .3、弧長(zhǎng)公式:.4、扇形面積公式:.§、任意角的三角函數(shù)1、

9、設(shè)是一個(gè)任意角,它的終邊與單位圓交于點(diǎn),那么:.2、 設(shè)點(diǎn)為角終邊上任意一點(diǎn),那么:(設(shè)) ,.3、 ,在四個(gè)象限的符號(hào)和三角函數(shù)線的畫(huà)法.4、 誘導(dǎo)公式一:(其中:)5、 特殊角0°,30°,45°,60°,90°,180°,270°的三角函數(shù)值.§、同角三角函數(shù)的基本關(guān)系式1、 平方關(guān)系:.2、 商數(shù)關(guān)系:.§1.3、三角函數(shù)的誘導(dǎo)公式1、 誘導(dǎo)公式二: 2、誘導(dǎo)公式三: 3、誘導(dǎo)公式四: 4、誘導(dǎo)公式五: 5、誘導(dǎo)公式六: §1.4.1、正弦、余弦函數(shù)的圖象1、記住正弦、余弦函數(shù)圖象:2、

10、 能夠?qū)φ請(qǐng)D象講出正弦、余弦函數(shù)的相關(guān)性質(zhì):定義域、值域、最大最小值、對(duì)稱(chēng)軸、對(duì)稱(chēng)中心、奇偶性、單調(diào)性、周期性.3、 會(huì)用五點(diǎn)法作圖.§1.4.2、正弦、余弦函數(shù)的性質(zhì)1、 周期函數(shù)定義:對(duì)于函數(shù),如果存在一個(gè)非零常數(shù)T,使得當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期.§1.4.3、正切函數(shù)的圖象與性質(zhì)1、記住正切函數(shù)的圖象:2、 能夠?qū)φ請(qǐng)D象講出正切函數(shù)的相關(guān)性質(zhì):定義域、值域、對(duì)稱(chēng)中心、奇偶性、單調(diào)性、周期性.§1.5、函數(shù)的圖象1、 能夠講出函數(shù)的圖象和函數(shù)的圖象之間的平移伸縮變換關(guān)系.2、 對(duì)于函數(shù):有:振幅A,周

11、期,初相,相位,頻率.§1.6、三角函數(shù)模型的簡(jiǎn)單應(yīng)用1、 要求熟悉課本例題.第二章、平面向量§、向量的物理背景與概念1、 了解四種常見(jiàn)向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§、向量的幾何表示1、 帶有方向的線段叫做有向線段,有向線段包含三個(gè)要素:起點(diǎn)、方向、長(zhǎng)度.2、 向量的大小,也就是向量的長(zhǎng)度(或稱(chēng)模),記作;長(zhǎng)度為零的向量叫做零向量;長(zhǎng)度等于1個(gè)單位的向量叫做單位向量.3、 方向相同或相反的非零向量叫做平行向量(或共線向量).規(guī)定:零向量與任意向量平行.§2.1.3、相等向量與共線向量1、 長(zhǎng)度相等且方向相同的向量叫做

12、相等向量.§2.2.1、向量加法運(yùn)算及其幾何意義1、 三角形法則和平行四邊形法則.2、 .§2.2.2、向量減法運(yùn)算及其幾何意義1、 與長(zhǎng)度相等方向相反的向量叫做的相反向量.§2.2.3、向量數(shù)乘運(yùn)算及其幾何意義1、 規(guī)定:實(shí)數(shù)與向量的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘.記作:,它的長(zhǎng)度和方向規(guī)定如下: ,當(dāng)時(shí), 的方向與的方向相同;當(dāng)時(shí), 的方向與的方向相反.2、 平面向量共線定理:向量與 共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使.§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)任一向量,有且只有一對(duì)

13、實(shí)數(shù),使.§2.3.2、平面向量的正交分解及坐標(biāo)表示1、 .§2.3.3、平面向量的坐標(biāo)運(yùn)算1、 設(shè),則: ,.2、 設(shè),則: .§2.3.4、平面向量共線的坐標(biāo)表示1、設(shè),則線段AB中點(diǎn)坐標(biāo)為,ABC的重心坐標(biāo)為.§2.4.1、平面向量數(shù)量積的物理背景及其含義1、 .2、 在方向上的投影為:.3、 .4、 .5、 .§2.4.2、平面向量數(shù)量積的坐標(biāo)表示、模、夾角1、 設(shè),則:2、 設(shè),則:.§2.5.1、平面幾何中的向量方法§2.5.2、向量在物理中的應(yīng)用舉例第三章、三角恒等變換§3.1.1、兩角差的余弦公式1、2、記住15°的三角函數(shù)值:§3.1.2、兩角和與差的正弦、余弦、正切公式1、2、3、4、.5、.§3.1.3、二倍角的正弦、余弦、正切公式1、, 變形:.2、, 變形1:, 變形2:.3、.§3.2、簡(jiǎn)單的三角恒等變換1、注意正切化

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論