等差數(shù)列知識點基礎練習題_第1頁
等差數(shù)列知識點基礎練習題_第2頁
等差數(shù)列知識點基礎練習題_第3頁
等差數(shù)列知識點基礎練習題_第4頁
等差數(shù)列知識點基礎練習題_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、等差數(shù)列知識點 1.等差數(shù)列的定義:(d為常數(shù))();2等差數(shù)列通項公式: , 首項:,公差:d,末項: 推廣: 從而;3等差中項(1)如果,成等差數(shù)列,那么叫做與的等差中項即:或(2)等差中項:數(shù)列是等差數(shù)列4等差數(shù)列的前n項和公式:(其中A、B是常數(shù),所以當d0時,Sn是關于n的二次式且常數(shù)項為0)特別地,當項數(shù)為奇數(shù)時,是項數(shù)為2n+1的等差數(shù)列的中間項(項數(shù)為奇數(shù)的等差數(shù)列的各項和等于項數(shù)乘以中間項)5等差數(shù)列的判定方法 (1) 定義法:若或(常數(shù)) 是等差數(shù)列 (2) 等差中項:數(shù)列是等差數(shù)列 數(shù)列是等差數(shù)列(其中是常數(shù))。(4)數(shù)列是等差數(shù)列,(其中A、B是常數(shù))。6等差數(shù)列的證明

2、方法 定義法:若或(常數(shù)) 是等差數(shù)列7.提醒:(1)等差數(shù)列的通項公式及前和公式中,涉及到5個元素:、及,其中、稱作為基本元素。只要已知這5個元素中的任意3個,便可求出其余2個,即知3求2。(2)設項技巧:一般可設通項奇數(shù)個數(shù)成等差,可設為,(公差為);偶數(shù)個數(shù)成等差,可設為,,(注意;公差為2)8.等差數(shù)列的性質:(1)當公差時,等差數(shù)列的通項公式是關于的一次函數(shù),且斜率為公差;前和是關于的二次函數(shù)且常數(shù)項為0.(2)若公差,則為遞增等差數(shù)列,若公差,則為遞減等差數(shù)列,若公差,則為常數(shù)列。(3)當時,則有,特別地,當時,則有.注:, (4)若、為等差數(shù)列,則都為等差數(shù)列(5) 若是等差數(shù)列

3、,則 ,也成等差數(shù)列 (6)數(shù)列為等差數(shù)列,每隔k(k)項取出一項()仍為等差數(shù)列(7)設數(shù)列是等差數(shù)列,d為公差,是奇數(shù)項的和,是偶數(shù)項項的和,是前n項的和1.當項數(shù)為偶數(shù)時,2、當項數(shù)為奇數(shù)時,則(其中是項數(shù)為2n+1的等差數(shù)列的中間項)(8)、的前和分別為、,且,則.(9)等差數(shù)列的前n項和,前m項和,則前m+n項和(10)求的最值法一:因等差數(shù)列前項是關于的二次函數(shù),故可轉化為求二次函數(shù)的最值,但要注意數(shù)列的特殊性。法二:(1)“首正”的遞減等差數(shù)列中,前項和的最大值是所有非負項之和即當 由可得達到最大值時的值 (2) “首負”的遞增等差數(shù)列中,前項和的最小值是所有非正項之和。即 當

4、由可得達到最小值時的值或求中正負分界項法三:直接利用二次函數(shù)的對稱性:由于等差數(shù)列前n項和的圖像是過原點的二次函數(shù),故n取離二次函數(shù)對稱軸最近的整數(shù)時,取最大值(或最小值)。若S p = S q則其對稱軸為注意:解決等差數(shù)列問題時,通??紤]兩類方法:基本量法:即運用條件轉化為關于和的方程;巧妙運用等差數(shù)列的性質,一般地運用性質可以化繁為簡,減少運算量等差數(shù)列基礎練習題一、填空題1. 等差數(shù)列8,5,2,的第20項為_.2. 在等差數(shù)列中已知a1=12, a6=27,則d=_3. 在等差數(shù)列中已知,a7=8,則a1=_4. 與的等差中項是_-5. 等差數(shù)列-10,-6,-2,2,前_項的和是54

5、6. 正整數(shù)前n個數(shù)的和是_7. 數(shù)列的前n項和,則_.8. 在等差數(shù)列中已知a1=12, a6=27,則d=_9. 在等差數(shù)列中已知,a7=8,則a1=_10. 在等差數(shù)列an中,an=m,an+m=0,則am= _。11 在等差數(shù)列an中,a4+a7+a10+a13=20,則S16= _ 。12 在等差數(shù)列an中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,則從a15到a30的和是 _ 。 13 已知等差數(shù)列 110, 116, 122,則大于450而不大于602的各項之和為 _ 。14若是方程的解,則_。15若公差,且是關于的方程的兩個根,則_。二、選擇題1若成等

6、差數(shù)列,則x的值等于( ) A.0 B. C. 32 D.0或32 2、等差數(shù)列中連續(xù)四項為a,x,b,2x,那么 a :b 等于 ( )A、 B、 C、或 1 D、3. 在等差數(shù)列中,則的值為( )A.84 B.72 C.60 . D.484. 在等差數(shù)列中,前15項的和 ,為( )A.6 B.3 C.12 D.4 5. 等差數(shù)列中, ,則此數(shù)列前20下項的和等于A.160 B.180 C.200 D.2206. 在等差數(shù)列中,若,則的值等于( )A.45 B.75 C.180 D.3007. 設是數(shù)列的前n項的和,且,則是( ) A.等比數(shù)列,但不是等差數(shù)列 B.等差數(shù)列,但不是等比數(shù)列

7、C.等差數(shù)列,且是等比數(shù)列 D.既不是等差數(shù)列也不是等比數(shù)列8. 數(shù)列3,7,13,21,31,的通項公式是( ) A. B. C. D.不存在 9、設數(shù)列an和bn都是等差數(shù)列,其中a1=25, b1=75,且a100+b100=100,則數(shù)列an+bn的前100項和為()A、 0 B、 100 C、10000 D、50500010. 等差數(shù)列中, ,則此數(shù)列前20下項的和等于A.160 B.180 C.200 D.22011一個項數(shù)為偶數(shù)的等差數(shù)列,它的奇數(shù)項的和與偶數(shù)項的和分別是24與30,若此數(shù)列的最后一項比第-10項為10,則這個數(shù)列共有( )A、 6項 B、8項 C、10項 D、12項三、計算題1.求集合中元素的個數(shù),并求這些

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論