




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、我國(guó)能源消費(fèi)量的計(jì)量分析一、經(jīng)濟(jì)背景分析隨著國(guó)際競(jìng)爭(zhēng)的日趨激烈,各國(guó)對(duì)于能源問(wèn)題的重視程度不斷加強(qiáng),能源問(wèn)題被不斷提升至國(guó)家的討論日程。因?yàn)閺哪撤N意義上說(shuō),能源決定了一個(gè)國(guó)家的未來(lái)發(fā)展,能否獲得有效的能源保障關(guān)系到國(guó)家的生死存亡,對(duì)各國(guó)發(fā)展意義重大。鑒于能源在國(guó)家發(fā)展中的重要地位,能源的供需情況成為世界各國(guó)矚目的焦點(diǎn),能源消費(fèi)問(wèn)題成為研究能源供需的重要出發(fā)點(diǎn)。尤其是對(duì)于中國(guó)而言,隨著國(guó)民經(jīng)濟(jì)的高速發(fā)展,能源消費(fèi)量劇增,2001年突破14億噸標(biāo)準(zhǔn)煤成為僅次于美國(guó)的世界第二大能源消費(fèi)國(guó),預(yù)計(jì)我國(guó)將于2010年超過(guò)美國(guó)位居能源消費(fèi)世界第一。面對(duì)數(shù)目如此巨大的能源消費(fèi)量,我國(guó)呈現(xiàn)出嚴(yán)重的能源供不應(yīng)求局
2、面,能源供求的矛盾日益突出。近期,我國(guó)相繼采取了一系列的解決未來(lái)能源問(wèn)題的行動(dòng),例如:中國(guó)在巴西購(gòu)買(mǎi)鋁土,在智利購(gòu)買(mǎi)銅,在澳大利亞購(gòu)買(mǎi)鋅,向哈薩克斯坦購(gòu)買(mǎi)石油,與日本爭(zhēng)奪“安大線”等等都表明能源對(duì)我國(guó)的重大意義。能否保證能源的供需平衡是我國(guó)未來(lái)的一個(gè)巨大挑戰(zhàn),而能源消費(fèi)則成為此問(wèn)題的重要因素。鑒于此選取我國(guó)能源消費(fèi)作為分析的對(duì)象,分析影響能源消費(fèi)量的因素,來(lái)探究我國(guó)能源問(wèn)題的過(guò)去、現(xiàn)在和未來(lái)。二、研究目的面對(duì)如此嚴(yán)峻的能源消費(fèi)形勢(shì),在盡量不影響經(jīng)濟(jì)發(fā)展的前提下,尋找出巨大能耗的主要影響因素,并據(jù)此研究改變能源消費(fèi)結(jié)構(gòu)的途徑,對(duì)于解決我國(guó)能源供需矛盾、促進(jìn)能源消費(fèi)合理化具有重要意義。本文即是采用
3、我國(guó)自1975年以來(lái)33年的數(shù)據(jù),運(yùn)用計(jì)量經(jīng)濟(jì)分析方法,對(duì)影響我國(guó)能源消費(fèi)的主要因素進(jìn)行定量分析,希望能夠?yàn)槲覈?guó)能源消費(fèi)問(wèn)題的解決有所幫助。三、變量的選取和樣本數(shù)據(jù)變量的選取由于本文是對(duì)于我國(guó)整體能源消費(fèi)的研究,通過(guò)對(duì)能源消費(fèi)理論的分析,人口越多則對(duì)能源的需求量越多,消耗也越多,而國(guó)內(nèi)生產(chǎn)總值則是經(jīng)濟(jì)規(guī)模和活躍程度的一個(gè)重要體現(xiàn)。所以本文選擇人口數(shù)量與人均國(guó)內(nèi)生產(chǎn)總值兩個(gè)宏觀因素作為解釋變量,從總體和宏觀角度來(lái)分析我國(guó)能源消費(fèi)問(wèn)題。其中:EC=能源消費(fèi)總量(被解釋變量)POP=年底人口數(shù)量(解釋變量)PGDP=人均國(guó)內(nèi)生產(chǎn)總值(解釋變量)數(shù)據(jù)的收集我國(guó)自1975年以來(lái)的能源消費(fèi)數(shù)據(jù)表年份PGD
4、PERPOPEC人均國(guó)內(nèi)生產(chǎn)總值(元)能源生產(chǎn)量(萬(wàn)噸標(biāo)準(zhǔn)煤)年底人口總數(shù)(萬(wàn)人)能源消耗量(萬(wàn)噸標(biāo)準(zhǔn)煤)2000790213856912674314696420018670147424127627155547200294501562771284531695772003106001782981292271970832004124002061071299882302812005142592290361307562613692006166022447621314482864672007203372641721321293114422008239122774191328023206112009259
5、63286092133450336126201030567312124134091360648201136018340177134735387043201239544351040135404402138201343320358783136072416913注釋?zhuān)?、以上所有數(shù)據(jù)均是根據(jù)中國(guó)1987統(tǒng)計(jì)年鑒與國(guó)家統(tǒng)計(jì)局網(wǎng)站數(shù)據(jù)進(jìn)行整合所得。 2、人均國(guó)民生產(chǎn)總值是按當(dāng)年價(jià)進(jìn)行計(jì)算所得。 3、能源消費(fèi)總量包括全國(guó)對(duì)煤炭、石油、天然氣、水電、核電及風(fēng)電的消費(fèi)量。四、模型的參數(shù)估計(jì)、檢驗(yàn)及修4.1模型的假定條件首先根據(jù)以上數(shù)據(jù)畫(huà)出散點(diǎn)圖,如下所示:從上圖可知解釋變量、與的關(guān)系都可大致看作線性關(guān)系,所以
6、我們建立以下二元回歸模型: 此模型應(yīng)滿足以下假設(shè)條件:假設(shè)1、解釋變量PGDP、POP是非隨機(jī)的或是固定的,且相互之間互不相關(guān) 假設(shè)2、隨機(jī)誤差項(xiàng)m具有零均值、同方差和無(wú)序列相關(guān)性: E(ut)=0 t=1,2, ,n Var (ut)= s 2 t=1,2, ,n Cov(ui, uj)=0 ij i,j= 1,2, ,n假設(shè)3、隨機(jī)誤差項(xiàng)m與解釋變量X之間不相關(guān): Cov(xjt ,ut)=0 t=1,2, ,n j=1,2假設(shè)4、m服從零均值、同方差的正態(tài)分布 ut N(0, s 2) t=1,2, ,n4.2模型參數(shù)的估計(jì)運(yùn)用eviews軟件可以對(duì)數(shù)據(jù)進(jìn)行初步的回歸,回歸結(jié)果如下表所示
7、:Dependent Variable: ECMethod: Least SquaresDate: 11/04/15 Time: 20:13Sample: 1975 2007Included observations: 33VariableCoefficientStd. Errort-StatisticProb. C-60969.8827707.90-2.2004510.0356PGDP8.2722420.65213712.684820.0000POP1.2018680.2642644.5479910.0001R-squared0.971304 Mean dependent var114651
8、.1Adjusted R-squared0.969391 S.D. dependent var57468.45S.E. of regression10054.31 Akaike info criterion21.35590Sum squared resid3.03E+09 Schwarz criterion21.49194Log likelihood-349.3723 F-statistic507.7264Durbin-Watson stat0.243129 Prob(F-statistic)0.000000根據(jù)上表可得回歸結(jié)果為:結(jié)果分析:(1) 擬合優(yōu)度:根據(jù)回歸結(jié)果可得到,修正的可決系數(shù)
9、為,這說(shuō)明模型對(duì)樣本的擬合很好。(2) 檢驗(yàn):針對(duì)給定顯著性水平,在分布表中查出自由度為和的臨界值。本模型得出的結(jié)果,因此,應(yīng)拒絕原假設(shè),說(shuō)明回歸方程顯著。(3) 檢驗(yàn):分別針對(duì),給定顯著性水平,查分布表得自由度為的臨界值。模型回歸結(jié)果顯示:與,對(duì)應(yīng)的統(tǒng)計(jì)量分別為-2.200451,12.68482,4.547991,其絕對(duì)值均大于。這說(shuō)明分別都應(yīng)當(dāng)拒絕原假設(shè),即在其他解釋變量不變的情況下,解釋變量PGDP,POP分別對(duì)被解釋變量EC都有顯著性影響。(4) 觀察得知D-W值非常小,說(shuō)明該模型有待進(jìn)一步修正,尤其是應(yīng)該進(jìn)行序列相關(guān)檢驗(yàn)。4.3 模型的檢驗(yàn)4.3.1 異方差的檢驗(yàn)1. 根據(jù)殘差圖初
10、步判定異方差是否存在圖顯示回歸方程的殘差分布有明顯增大形式,所以判定該回歸方程存在異方差。2. 用White檢驗(yàn)法檢驗(yàn)“異方差”問(wèn)題,檢驗(yàn)結(jié)果見(jiàn)下表:White Heteroskedasticity Test:F-statistic7.760637 Probability0.000243Obs*R-squared17.35027 Probability0.001652Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 11/05/15 Time: 20:26Sample: 1975 2007Included ob
11、servations: 33VariableCoefficientStd. Errort-StatisticProb. C1.42E+105.10E+092.7937680.0093PGDP-115015.457899.11-1.9864800.0568PGDP22.4035221.7228881.3950540.1740POP-281940.0100562.8-2.8036220.0091POP21.3992830.4980252.8096630.0089R-squared0.525766 Mean dependent var91899224Adjusted R-squared0.45801
12、8 S.D. dependent var1.19E+08S.E. of regression87873573 Akaike info criterion39.55942Sum squared resid2.16E+17 Schwarz criterion39.78617Log likelihood-647.7305 F-statistic7.760637Durbin-Watson stat1.063793 Prob(F-statistic)0.000243根據(jù)上表中Obs*R-squared行的值得,可以判斷出,在0.05的判斷標(biāo)準(zhǔn)下,(9.488為顯著性水平為0.05,自由度為4的情況下的卡
13、方分布的值),拒絕原假設(shè),所以該模型存在異方差問(wèn)題。4.3.2 序列相關(guān)性檢驗(yàn)1.根據(jù)散點(diǎn)圖判別序列相關(guān)性其中Y的實(shí)際觀察值序列(Actual)、擬合值序列(Fitted)以及殘差序列(Residual),變量對(duì)其一階滯后變量的散點(diǎn)圖如下:結(jié)合上面兩幅圖,分析初步得出該模型存在正自相關(guān)的結(jié)論。2. 序列相關(guān)性檢驗(yàn)本文利用拉格朗日乘數(shù)檢驗(yàn),檢驗(yàn)結(jié)果如下:Breusch-Godfrey Serial Correlation LM Test:F-statistic105.4246 Probability0.000000Obs*R-squared29.13145 Probability0.000000
14、Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 11/05/15 Time: 20:31VariableCoefficientStd. Errort-StatisticProb. C-13965.9110178.61-1.3720830.1809PGDP-0.4977400.252640-1.9701520.0588POP0.1401170.0974431.4379400.1615RESID(-1)1.6030510.14714810.894140.0000RESID(-2)-0.8709770.157902-
15、5.5159300.0000R-squared0.882771 Mean dependent var1.56E-11Adjusted R-squared0.866024 S.D. dependent var9735.044S.E. of regression3563.289 Akaike info criterion19.33348Sum squared resid3.56E+08 Schwarz criterion19.56023Log likelihood-314.0025 F-statistic52.71230Durbin-Watson stat2.065478 Prob(F-stati
16、stic)0.000000根據(jù)上表中Obs*R-squared行的P值,可以判斷出,該模型拒絕原假設(shè),存在序列相關(guān)性。樣本量,序列相關(guān)的階數(shù),LM統(tǒng)計(jì)量, , ,所以存在序列相關(guān)性4.3.3 隨機(jī)解釋變量問(wèn)題與多重共線性問(wèn)題的檢驗(yàn)將初始回歸得到的殘差與被解釋變量EC及解釋變量PGDP,POP的相關(guān)關(guān)系顯示如下表:ECPGDPPOPRESIDEC1.0000000.9754590.9040990.169398PGDP0.9754591.0000000.851153-8.19E-15POP0.9040990.8511531.000000-4.41E-14RESID0.169398-8.19E-15
17、-4.41E-141.000000根據(jù)上表可以看出,殘差序列與解釋變量的相關(guān)系數(shù)非常小,所以可以判定,該模型基本不存在隨機(jī)解釋變量問(wèn)題。由上表同時(shí)可以看出,解釋變量POP與PGDP之間存在較為嚴(yán)重的多重共線性問(wèn)題。4.4 根據(jù)檢驗(yàn)結(jié)果進(jìn)行模型修正4.4.1修正多重共線性本模型中,解釋變量POP與PGDP之間存在較為嚴(yán)重的多重共線性問(wèn)題,針對(duì)此類(lèi)問(wèn)題一般采取取對(duì)數(shù)的方法修正。修正結(jié)果如下表:Dependent Variable: LOG(EC)Method: Least SquaresDate: 11/06/15 Time: 11:04Sample: 1975 2007Included obse
18、rvations: 33VariableCoefficientStd. Errort-StatisticProb. C1.1481339.8583350.1164630.9081LOG(PGDP)0.2945610.0761223.8695770.0005LOG(POP)0.6978150.8965510.7783330.4425R-squared0.964666 Mean dependent var11.53519Adjusted R-squared0.962311 S.D. dependent var0.484419S.E. of regression0.094044 Akaike inf
19、o criterion-1.803609Sum squared resid0.265326 Schwarz criterion-1.667562Log likelihood32.75954 F-statistic409.5262Durbin-Watson stat0.188063 Prob(F-statistic)0.000000與原表進(jìn)行對(duì)比后,可以看出取對(duì)數(shù)后,常數(shù)項(xiàng)和POP都無(wú)法通過(guò)t檢驗(yàn)而需要被舍去,回歸的結(jié)果變差。同時(shí),由于多重共線性對(duì)回歸結(jié)果的影響程度小于序列相關(guān)以及異方差,因此,在本文中,沒(méi)有采用對(duì)數(shù)化的方程,仍然使用真值進(jìn)行計(jì)量分析。4.4.2 修正序列相關(guān)性由于本文模型是時(shí)間
20、序列模型,所以首先進(jìn)行序列相關(guān)性問(wèn)題修正。運(yùn)用廣義差分法對(duì)模型進(jìn)行修正由,可得 ,其中 ,,結(jié)果如下:Dependent Variable: EC1Method: Least SquaresDate: 11/04/15 Time: 20:29Sample(adjusted): 1976 2007Included observations: 32 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C3367.58513689.030.2460060.8074PGDP19.0122851.0168818.8
21、626770.0000POP10.4582640.9618400.4764450.6373R-squared0.868522 Mean dependent var20243.58Adjusted R-squared0.859454 S.D. dependent var12819.62S.E. of regression4805.999 Akaike info criterion19.88218Sum squared resid6.70E+08 Schwarz criterion20.01959Log likelihood-315.1148 F-statistic95.78456Durbin-W
22、atson stat0.804892 Prob(F-statistic)0.000000根據(jù)上表可看出運(yùn)用廣義積分法對(duì)模型進(jìn)行修正后,的檢驗(yàn)值都小于的臨界值,且D-W的值的值都很小,說(shuō)明該修正方法不合適。接下來(lái)再運(yùn)用Cochrane-Orcutt迭代法進(jìn)行自相關(guān)修正。Cochrane-Orcutt迭代法結(jié)果如下所示:Dependent Variable: ECMethod: Least SquaresDate: 11/05/15 Time: 21:18Sample(adjusted): 1977 2007Included observations: 31 after adjusting end
23、pointsConvergence achieved after 6 iterationsVariableCoefficientStd. Errort-StatisticProb. C-100000.539482.68-2.5327700.0177PGDP6.7075240.9178217.3080960.0000POP1.6000280.3752894.2634540.0002AR(1)1.6541710.14342711.533210.0000AR(2)-0.9228220.154888-5.9579830.0000R-squared0.997004 Mean dependent var1
24、19039.7Adjusted R-squared0.996543 S.D. dependent var56518.34S.E. of regression3323.162 Akaike info criterion19.20191Sum squared resid2.87E+08 Schwarz criterion19.43320Log likelihood-292.6296 F-statistic2162.887Durbin-Watson stat2.058220 Prob(F-statistic)0.000000Inverted AR Roots .83+.49i .83 -.49i模型
25、經(jīng)過(guò)Cochrane-Orcutt迭代法可變?yōu)椋涸撃P筒捎肅ochrane-Orcutt迭代法,加入和項(xiàng)后,檢驗(yàn)和檢驗(yàn)都拒絕原假設(shè),且顯示擬合程度非常好。DW的值為2.058220,該模型的樣本量,查表得,DW的值在之間,接受原假設(shè),認(rèn)為該模型非序列相關(guān)。4.4.3 修正后再次進(jìn)行異方差檢驗(yàn)(White檢驗(yàn))檢驗(yàn)結(jié)果如下表所示:White Heteroskedasticity Test:F-statistic2.295311 Probability0.086165Obs*R-squared8.090064 Probability0.088334Test Equation:Dependent V
26、ariable: RESID2Method: Least SquaresDate: 11/05/15 Time: 21:41Sample: 1977 2007Included observations: 31VariableCoefficientStd. Errort-StatisticProb. C8.53E+081.13E+090.7529220.4583PGDP-731.079311466.07-0.0637600.9496PGDP2-0.0945450.333039-0.2838860.7787POP-16172.6122062.36-0.7330410.4701POP20.07662
27、70.1079390.7099110.4841R-squared0.260970 Mean dependent var9262212.Adjusted R-squared0.147273 S.D. dependent var17347550S.E. of regression16019287 Akaike info criterion36.16318Sum squared resid6.67E+15 Schwarz criterion36.39446Log likelihood-555.5292 F-statistic2.295311Durbin-Watson stat2.870678 Pro
28、b(F-statistic)0.086165該修正后的模型中加入了和兩項(xiàng)后,則,則拒絕原假設(shè),修正后的模型具有同方差,即不存在異方差。4.4.4 修正后再次進(jìn)行序列相關(guān)性檢驗(yàn)檢驗(yàn)結(jié)果如下表所示:Breusch-Godfrey Serial Correlation LM Test:F-statistic6.954647 Probability0.004146Obs*R-squared4.37421 Probability0.003389Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 11/06/15 Time:
29、09:00VariableCoefficientStd. Errort-StatisticProb. C-70060.6137786.80-1.8541030.0761PGDP-2.2736420.979549-2.3211110.0291POP0.6904310.3625161.9045520.0689AR(1)0.6161860.2167522.8428150.0090AR(2)-0.4799390.194665-2.4654650.0212RESID(-1)-0.5777780.250612-2.3054660.0301RESID(-2)-0.9757360.262763-3.71337
30、10.0011R-squared0.366910 Mean dependent var1.57E-07Adjusted R-squared0.208637 S.D. dependent var3093.696S.E. of regression2752.107 Akaike info criterion18.87380Sum squared resid1.82E+08 Schwarz criterion19.19760Log likelihood-285.5439 F-statistic2.318216Durbin-Watson stat2.225994 Prob(F-statistic)0.
31、065929根據(jù)上表中Obs*R-squared行的P值,可以判斷出,在0.05的判斷標(biāo)準(zhǔn)下,該模型不存在序列相關(guān)性問(wèn)題。樣本量,序列相關(guān)的階數(shù),LM統(tǒng)計(jì)量, , ,說(shuō)明修正后的模型不存在序列相關(guān)性。五、 時(shí)間序列問(wèn)題5.1 時(shí)間序列平穩(wěn)性檢驗(yàn)首先,畫(huà)出序列EC的時(shí)間路徑圖。由圖可以看出序列EC存在一個(gè)明顯的上升趨勢(shì),于是初步判定序列EC不平穩(wěn)。但要確定序列EC的平穩(wěn)性需要進(jìn)一步進(jìn)行單位根檢驗(yàn):進(jìn)行ADF檢驗(yàn)有三種形式,需要從帶趨勢(shì)和截距項(xiàng)的形式開(kāi)始,逐步進(jìn)行。(1)帶趨勢(shì)和截距項(xiàng)Null HECpothesis: EC has a unit root Exogenous: Constant,
32、 Linear TrendLag Length: 1 (Fixed)t-Statistic Prob.*Augmented DickeEC-Fuller test statistic-1.293269 0.8709Test critical values:1% level-4.2845805% level-3.56288210% level-3.215267*MacKinnon (1996) one-sided p-values.Augmented DickeEC-Fuller Test EquationDependent Variable: D(EC)Meth
33、od: Least SquaresDate: 11/28/09 Time: 13:16Sample (adjusted): 1977 2007Included observations: 31 after adjustmentsVariableCoefficientStd. Errort-StatisticProb. EC(-1)-0.0861380.066605-1.2932690.2069D(EC(-1)0.9112320.1786335.1011300.0000C1441.4042335.0290.6172960.5422TREND(1975)548.7014311
34、.82411.7596510.0898R-squared0.729403 Mean dependent var7024.258Adjusted R-squared0.699336 S.D. dependent var7808.841S.E. of regression4281.808 Akaike info criterion19.68205Sum squared resid4.95E+08 Schwarz cr
35、iterion19.86708Log likelihood-301.0718 Hannan-Quinn criter.19.74237F-statistic24.25974 Durbin-Watson stat1.700169Prob(F-statistic)0.000000可以看出,模型中C和T的檢驗(yàn)無(wú)法通過(guò),因此需要排除時(shí)間趨勢(shì),進(jìn)行下一個(gè)形式的檢驗(yàn),即帶截距項(xiàng)的檢驗(yàn)。(2)帶截距項(xiàng)Null HECpothesis: EC has a unit root Exogenous: ConstantLag
36、 Length: 1 (Fixed)t-Statistic Prob.*Augmented DickeEC-Fuller test statistic 1.059182 0.9962Test critical values:1% level-3.6616615% level-2.96041110% level-2.619160*MacKinnon (1996) one-sided p-values.Augmented DickeEC-Fuller Test EquationDependent Variable: D(EC)Method: Least S
37、quaresDate: 11/28/09 Time: 13:19Sample (adjusted): 1977 2007Included observations: 31 after adjustmentsVariableCoefficientStd. Errort-StatisticProb. EC(-1)0.0243680.0230061.0591820.2986D(EC(-1)0.7422740.1561714.7529640.0001C-514.39412129.019-0.2416110.8108R-squared0.698370
38、0; Mean dependent var7024.258Adjusted R-squared0.676825 S.D. dependent var7808.841S.E. of regression4439.205 Akaike info criterion19.72610Sum squared resid5.52E+08 Schwarz criterion19.86488Log likelihood-302.7546
39、160; Hannan-Quinn criter.19.77134F-statistic32.41453 Durbin-Watson stat1.492949Prob(F-statistic)0.000000同樣,C的檢驗(yàn)仍無(wú)法通過(guò),此種形式是錯(cuò)誤的,需要進(jìn)行最后一個(gè)形式的檢驗(yàn)。(3)不帶截距項(xiàng)Null HECpothesis: EC has a unit root Exogenous: NoneLag Length: 1 (Fixed)t-Statistic Prob.*Augmented DickeEC-Full
40、er test statistic 1.733905 0.9774Test critical values:1% level-2.6416725% level-1.95206610% level-1.610400*MacKinnon (1996) one-sided p-values.Augmented DickeEC-Fuller Test EquationDependent Variable: D(EC)Method: Least SquaresDate: 11/28/09 Time: 13:20Sample (adjusted): 1977 2007Included
41、observations: 31 after adjustmentsVariableCoefficientStd. Errort-StatisticProb. EC(-1)0.0195480.0112741.7339050.0936D(EC(-1)0.7573410.1408375.3774330.0000R-squared0.697741 Mean dependent var7024.258Adjusted R-squared0.687319 S.D. dependent var
42、7808.841S.E. of regression4366.541 Akaike info criterion19.66367Sum squared resid5.53E+08 Schwarz criterion19.75619Log likelihood-302.7869 Hannan-Quinn criter.19.69383Durbin-Watson stat1.499492在最終形式中可以容易的看出,序列EC不平穩(wěn)。接下來(lái),需要對(duì)EC做差分,使不平
43、穩(wěn)的數(shù)據(jù)平穩(wěn)化,并確定序列的單整階數(shù)。5.2 不平穩(wěn)序列平穩(wěn)化對(duì)序列EC做一階差分后進(jìn)行單位根檢驗(yàn):Null HECpothesis: D(EC) has a unit root Exogenous: NoneLag Length: 1 (Fixed)t-Statistic Prob.*Augmented DickeEC-Fuller test statistic-0.960177 0.2934Test critical values:1% level-2.6443025% level-1.95247310% level-1.610211*MacKinnon (
44、1996) one-sided p-values.Augmented DickeEC-Fuller Test EquationDependent Variable: D(EC,2)Method: Least SquaresDate: 11/28/09 Time: 13:32Sample (adjusted): 1978 2007Included observations: 30 after adjustmentsVariableCoefficientStd. Errort-StatisticProb. D(EC(-1)-0.0867450.090343-0.9601770
45、.3452D(EC(-1),2)0.2425340.1998411.2136360.2350R-squared0.047298 Mean dependent var492.9950Adjusted R-squared0.013273 S.D. dependent var4562.332S.E. of regression4531.953 Akaike info criterion19.74003Sum squared resid5.75E+08 &
46、#160; Schwarz criterion19.83345Log likelihood-294.1005 Hannan-Quinn criter.19.76992Durbin-Watson stat1.862451dEC序列仍然是不平穩(wěn)序列,需要進(jìn)一步進(jìn)行二階差分。二階查分后,通過(guò)ddEC的時(shí)間路徑圖可以初步判斷,ddEC序列已經(jīng)平穩(wěn)。下面對(duì)ddEC序列進(jìn)行單位根檢驗(yàn),以確定ddEC序列是否已經(jīng)平穩(wěn)。Null HECpothesis: D(EC,2) has a unit rootExogenous: NoneLag Le
47、ngth: 1 (Fixed)t-Statistic Prob.*Augmented DickeEC-Fuller test statistic-4.855532 0.0000Test critical values:1% level-2.6471205% level-1.95291010% level-1.610011*MacKinnon (1996) one-sided p-values.Augmented DickeEC-Fuller Test EquationDependent Variable: D(EC,3)Method: Least Squares
48、Date: 11/28/09 Time: 13:33Sample (adjusted): 1979 2007Included observations: 29 after adjustmentsVariableCoefficientStd. Errort-StatisticProb. D(EC(-1),2)-1.1296610.232654-4.8555320.0000D(EC(-1),3)0.3563370.1799791.9798800.0580R-squared0.488642 Mean dependent var-87
49、.66552Adjusted R-squared0.469702 S.D. dependent var6018.904S.E. of regression4383.058 Akaike info criterion19.67535Sum squared resid5.19E+08 Schwarz criterion19.76965Log likelihood-283.2926 Hannan-Quinn criter.19.70489Durbin-Watson stat1.803053由輸出結(jié)果可以看出,ddEC序列已經(jīng)平穩(wěn),并且DW值也符合要求,說(shuō)明EC是I(2)的,其中滯后階數(shù)1。檢驗(yàn)序列PGDP、POP的平穩(wěn)性,檢驗(yàn)步驟與檢驗(yàn)EC的平穩(wěn)性相同。由時(shí)間路徑圖初步判斷PGDP、POP都是不平穩(wěn)的。PGDP序列形式為不帶截距項(xiàng),三階差分后平穩(wěn),即dddPGD
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 歲末年初安全生產(chǎn)大檢查工作總結(jié)
- 運(yùn)輸公司安全生產(chǎn)月活動(dòng)方案
- 安全生產(chǎn)檢查方式
- 安全生產(chǎn)中四懂四會(huì)的內(nèi)容是什么
- 焊接與切割作業(yè)安全管理制度
- 安全隱患檢查表
- 工序安全操作規(guī)程
- 客運(yùn)公司安全生產(chǎn)方案
- 安全培訓(xùn)的心得體會(huì)1000字
- 安全生產(chǎn)的五不傷害是指什么
- 2025區(qū)域型變電站智能巡視系統(tǒng)技術(shù)規(guī)范
- 財(cái)務(wù)報(bào)表編制與審核合同模板
- 上海閔行區(qū)教育系統(tǒng)招聘實(shí)驗(yàn)員考試真題2024
- 建設(shè)部建設(shè)工程重大質(zhì)量安全事故應(yīng)急預(yù)案
- 2025年中航油招聘筆試參考題庫(kù)附帶答案詳解
- 2024年中國(guó)中高端電子鋁箔行業(yè)市場(chǎng)調(diào)查報(bào)告
- DB54∕T 0275-2023 民用建筑節(jié)能技術(shù)標(biāo)準(zhǔn)
- 2025年人教版小學(xué)五年級(jí)英語(yǔ)(下冊(cè))期末試卷及答案
- 交通貨運(yùn)企業(yè)-隱患排查治理和防控制度
- 中煙公司財(cái)務(wù)管理制度
- 《學(xué)習(xí)雷鋒精神爭(zhēng)主題班會(huì)》課件
評(píng)論
0/150
提交評(píng)論