帶流動的日冕磁片中駐立 kink 模和 sausage【推薦論文】_第1頁
帶流動的日冕磁片中駐立 kink 模和 sausage【推薦論文】_第2頁
帶流動的日冕磁片中駐立 kink 模和 sausage【推薦論文】_第3頁
帶流動的日冕磁片中駐立 kink 模和 sausage【推薦論文】_第4頁
帶流動的日冕磁片中駐立 kink 模和 sausage【推薦論文】_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、帶流動的日冕磁片中駐立 kink 模和 sausage模的周期比陳延軍,于慧,李波5(山東省光學(xué)天文與日地空間環(huán)境重點(diǎn)實(shí)驗(yàn)室,山東大學(xué)(威海),威海 264209) 摘要:駐波的基模與高次諧模周期之比在日冕的磁震學(xué)應(yīng)用中有重要價值。我們系統(tǒng)考查流 動對磁片所支持駐立 kink 和 sausage 模周期比的影響。為此對色散關(guān)系進(jìn)行了數(shù)值求解,并 構(gòu)造了計(jì)算周期比的簡單方法。結(jié)果表明流動對于駐立快 kink 和 sausage 模都有顯著影響。10對 kink 模,在所考慮參數(shù)范圍內(nèi),與靜態(tài)情形相比,周期比減小幅度可達(dá) 23%。對 sausage模,與靜態(tài)情形相比,周期比減小幅度僅約 5%,但流

2、動對波模的可觀測性有非常大的影響: 只有對于足夠?qū)挼拇牌拍苤С竹v立 sausage 模。當(dāng)密度比給定后,其截至橫縱比甚至能達(dá)到靜態(tài)情形時的幾倍。這表明將多周期用于冕震學(xué)應(yīng)用時必須要考慮流動的效應(yīng)。關(guān)鍵詞:磁流體力學(xué);日冕;震蕩與波15中圖分類號:p354.1the period ratio for standing kink and sausage modes in acoronal magnetic slab with siphon flowchen yanjun, yu hui, li bo20(shandong provincial key laboratory of optical

3、astronomy & solar-terrestrialenvironment,shandong university weihai,weihai 264209)abstract: in seismological inferences of physical parameters of discrete coronal structures, the ratio of the period of the fundamental mode to twice the one of its first overtone plays an important role. we examine ho

4、w introducing the flows affects the dispersion properties of25standing kink and sausage modes supported by magnetic slabs with siphon flows, thereby expanding recent studies where the slabs are static. we numerically solve the dispersion relations pertinent to such a system, and devise a graphic mea

5、ns to construct standging modes. the flows have significant effects, for the fast kink and sausage modes alike. for the kink ones, they may reduce the ratio of the period by up to 23% compared with the static case. for the sausge modes,30while introducing the flow reduces the ratio of the period by

6、typically about 5% relative to the static case, it has significant effects on the threshold aspect ratio only above which the modes can exisit. we conclude that the flow effects should be considered in seismological applications of multiple periodicities to coronal structures.key words: magnetohydro

7、dynamics, solar corona, oscillations and waves350引言迄今為止,已有大量觀測證據(jù)表明,結(jié)構(gòu)化日冕中存在波和震蕩現(xiàn)象1-4。而冕環(huán)所支 持的波模較多的則是快慢磁聲波。我們已通過 soho/sumer 觀測到了駐立的慢波5-7。同樣 soho/uvcs8、soho/eit9以及 trace10-14觀測到了傳播的慢波的存在。另一方面,駐立40kink 模則是被觀測到最為頻繁的快波15-17。除此之外,傳播 kink 模18、駐立 sausage 模19-21以及傳播 sausage 模22-23的觀測事實(shí)就要相對少很多了。 目前,已有觀測證實(shí)日冕震蕩

8、結(jié)構(gòu)中存在著多周期現(xiàn)象。van doorsselaere 等24觀測到基金項(xiàng)目:國家自然科學(xué)基金(編號 40974097、41204115),教育部博士點(diǎn)基金(編號20110131110058)作者簡介:陳延軍(1988-),男,碩士研究生,空間物理通信聯(lián)系人:李波(1976-),男,教授,空間等離子體物理. e-mail: bbl了同時存在的時間尺度相差較大的快、慢模。而時間尺度相當(dāng)?shù)幕Ec其諧模的共存現(xiàn)象也已被觀測到,包括 kink 模25-26,sausage 模19-20以及慢波27。45記基模周期為 p1 ,第一諧模周期為 p2 。由觀測即可得 p12 p2 的值25-26。對均勻細(xì)

9、長冕環(huán),這一比值應(yīng)非常接近于 1。andries 等28-29認(rèn)為縱向結(jié)構(gòu)化(包括密度分層和磁場的不均勻性)是引起 p12 p2 偏離 1 的最主要原因,并由此建議利用這一偏離來進(jìn)行冕環(huán)縱向結(jié)構(gòu)信息的推測28,30,31。在日冕震蕩結(jié)構(gòu)中經(jīng)常曾觀測到流動的存在32-33 。其中小于 alfven 速度的量級(約為50100km s-1 )的流動,對于細(xì)冕環(huán)所支持的 kink 模的基模和諧模周期影響較小34。故在用周期比偏離 1 進(jìn)行磁震學(xué)應(yīng)用時可忽略其影響。但其中有一部分達(dá)到 alfven 速度量級的流動(103 km s-1 )35-36,則對推測得到的冕環(huán)參數(shù)有較大影響37。前面已提到多周

10、期現(xiàn)象在冕震學(xué)中的重要性,以及 alfven 速度量級的流動對于冕震學(xué)應(yīng)用的影響。自然地,我們將進(jìn)一步研究流動如何影響多周期。ruderman34已進(jìn)行了柱坐55標(biāo)幾何下,細(xì)流管近似情形下的相關(guān)研究。而 macnarama & roberts38是迄今唯一對磁片模 型下的周期比所進(jìn)行的理論研究。其結(jié)論認(rèn)為橫向結(jié)構(gòu)化對于周期比偏離 1 也是有貢獻(xiàn)的。 我們的研究考慮了帶流動的磁片模型,對 macnarama & roberts38 (其采用了靜態(tài)磁片模型) 進(jìn)行補(bǔ)充與擴(kuò)展。并將考查流動對于色散特性以及駐立 kink 模和 sausage 模周期比的影響。1色散關(guān)系和色散關(guān)系圖概述601.1磁片色

11、散關(guān)系我們采用的磁片模型半寬為 d ,邊界面為 x = d 。磁片在 y 和 z 方向上無限延伸。下 標(biāo) 0 和 e 依次代表磁片內(nèi)外的均勻參數(shù)。背景磁場 b0 和 be ,以及背景流動u 0 和u e 都是沿s a著 z 向的。 r 和 p 分別代表質(zhì)量密度和熱壓。根據(jù)邊界面兩端的平衡條件,我們可以得到:r 2c2 + g v2 e =0a0 ,(1)ea0r 2c2 + g v2e65其中絕熱指數(shù)g = 5 3 ,c =g p r 為絕熱聲速,v= b 為 alfven 速度,c =cs va 為流管速度。a 4prt c2 + v2我們假定波只在 x - z 平面內(nèi)傳播,且所有擾動量都可

12、以描述為如下形式:d f ( x, z; t ) = re f% ( x ) exp i (kz - wt ) ,(2)其中 re (.) 表示取虛數(shù)的實(shí)部。我們定義70m2 =i i ai( k 2c2 - w2 )( k 2v2i- w2 ),(3)i ( c2 + v2 )( k 2c2 - w2 )iaiti i其中 i 取 0 和 e。為了確保波在磁片兩側(cè)是衰減的,我們?nèi)?m2 0 。在另一方面, m2 的符e0號則決定了波的種類。當(dāng) m2 0 時,波在磁片內(nèi)部消逝,為表面波;當(dāng) m2 v c c 。計(jì)算中,我們選取 c= 0.72c , v= 4c 。以 trace 觀測ae a0

13、 0 ee 0 a0 00時采用的波長為 171a 的譜線( 對應(yīng)溫度為0.96mk) 為例,可得 c0 130 km s -1 ,于是aec 93 km s -1 , v0 520 km s-1 。這一系列值與 nakariakov & ofman40值非常接近。由冕環(huán)內(nèi)外平衡條件(1)式,取片外和片內(nèi) alfven 速度之比 v v = 2 (3, 4) 時,可得內(nèi)外密95度比 r0re = 3.67 (8.41,14.9) 。ae a0100圖 1:色散關(guān)系圖. (a)至(d)分別對應(yīng)于片內(nèi) mach 數(shù)為 0, 0.8, 1.2, 3.2 的情形。fig1: dispersion di

14、agram. panels (a) to (d) correspond to an internal mach number of 0, 0.8, 1.2, 3.2, respectively.圖 1 是給定背景流動條件下,求解(4)和(5)式得到的 v ph - kd 色散關(guān)系圖。我們同樣以片內(nèi)聲速 c0 來度量u 0 ,即 m 0 = u 0c0 。圖 1 中從上到下 a、b、c、d 四欄依次代表背景流動 m 0 = 0, 0.8,1.2, 3.2 時的情形。圖中虛線代表 kink 模,實(shí)線代表 sausage 模。在每一欄的左邊,我們標(biāo)注了片外的特征速度,從上到下依次為 v , c ,

15、c , -c, -c和 -v 。aeetetee ae105由于 c 和 c 的值非常接近,故我們很難區(qū)分出-c , -c 和 c e , c 兩個區(qū)間。而當(dāng)相速teee te t eph e度 v處于這兩個區(qū)間內(nèi)時,m2 0 ,即波模為表面波;當(dāng) v- u 0處于剩余四個區(qū)間內(nèi)時, m2 0 。此時 n2 ,但是 n d 卻為一個非零的有限數(shù):0 0(c2 - c2 )(v2- c2 )n0 d 0t0(c2 + v2a0t0) vc2。(7)0a0t0130此時對于 kink(sausage)模,為了滿足 n0 cot (n0d )(n0 tan (n0d ) 為有限值這一條件,必須使得

16、cot (n0d )(tan (n0d ) 的值接近于 0。由此可以得到2 2 2n0 d hj ,(8)其中 ( j -1 2)phj = jpkink sausage(9)135j = 1, 2,. 。結(jié)合(7)和(8)式,可以推得v =c4t0c2v2 h2。(10)0 a0那么當(dāng) kd 0 時,慢波相速度可以表示為c40vph= u ct01+ t0c2v2 h2k 2d 2 。(11)0 a0 j同理,我們可以推得在 kd 1 近似條件下,慢波相速度的表達(dá)式:140v = u c2 2c g1- 0 j(kd )-2 ,(12)ph00其中2 - c2va0 jpkinkg j =

17、( j -1 2)p,(13)sausagej = 1, 2,. 。(11)和(12)兩式中的正負(fù)號分別代表色散圖中上下兩類慢波,即前向和后向慢波。0由(11)式我們還可以發(fā)現(xiàn),當(dāng)u0 ct( m 0 值不小于 0.97)時,后向慢波(包括 bsk 和 bss)145的相速度符號會由靜態(tài)情形下的負(fù)號變?yōu)檎?。在圖 1c 和 d 中,清晰地呈現(xiàn)了這一點(diǎn)。在(9)和(13)式中,我們發(fā)現(xiàn) j 的取值有無數(shù)種可能,即存在無數(shù)支慢波。但是由于 c 和 c 的t00值非常接近,使得我們很難在圖中區(qū)分出這無數(shù)支的慢波,這一點(diǎn)對 kink 模和 sausage 模都 成立。0由圖 1 我們發(fā)現(xiàn)慢波是近似無色

18、散的。而我們考慮的 p12 p2 偏離 1 完全是由波的色散150所引起地,因此我們不再考慮慢波。相反地,我們發(fā)現(xiàn)快波存在明顯的色散,因此自然會對其進(jìn)行研究。所謂快波,指的是靜態(tài)情形下相速度達(dá)到 alfven 速度量級的波模。由圖 1 我們看到隨 著u 0 的增加,上下部分的快模表現(xiàn)出完全不同的性質(zhì):在上半部分,快波的色散相應(yīng)地減e 0 0 0?。欢谙掳氩糠?,色散則相應(yīng)增加。不論 u 0 取何值,前向和后向快波總是位于155va0 + u0 , vae 和-va , -va + u 兩個區(qū)間內(nèi)。當(dāng) kd ? 1 時,快波相速度趨近u 0 va ,其中正負(fù)號分別代表前向和后向快波。與慢波類似,

19、我們可以得到快波在 kd ? 1 時的相速 度表達(dá)式:v= u v2 2v h1+ a0 j0(kd )-2 。(14)ph0a02 - c2va0160從圖中,我們還可以看到,除第一支快 kink 模(ffk1 和 bfk1)以外的其余快模,都存在截止現(xiàn)象。其截止波數(shù)可以表示為c(kd )其中= g j l ,(15)(c2 + v2) (v2m u 2 ) - c2 l =0 a0 ae 0t0 。(16)(v2m u 2 ) - c2 (v2m u 2 ) - v2 ae0 0 ae 0a0 而對于第一支快 kink 模,我們可以推導(dǎo)其相速度在細(xì)磁片近似( kd = 1 )下的表達(dá)式16

20、5v v1 -h ( kd )2 ,(17)ph ae其中(vte2ae2 (v2m u 2 ) - v2 (v2- c2 )eaeh = r0 ae 0 ae ae e 。(18)r(vae e 2 + c2 ) v22- c2 )+ -170175式中 vph 和 vph 分別代表 ffk1 和 bfk1 的情形。這一部分的研究與 nakariakov & roberts39(以下簡稱 nr95)中 3.2 節(jié)相似,不過我們對 其進(jìn)行了擴(kuò)展與補(bǔ)充。對于細(xì)磁片近似下( kd 0 )的慢波,與 nr95 中(16)式相比較,我們 補(bǔ)充了 v ph 為負(fù)時的情形(11 式);并且我們還給出了寬磁

21、片( kd ? 1 )近似下慢波的表達(dá)式 (12 式)。對于快波,我們不僅推導(dǎo)了 kink 和 sausage 模在時的 v ph 表達(dá)式(14 式),還 給出了細(xì)磁片近似下 ffk1 和 bfk1 的 v ph 表達(dá)式(17 和 18 式)。在給定截止波數(shù)時,與 nr95 中僅描述 v ph 0 的情形(其第 13 式)相比,本文中(15)和(16)式同時考慮了 v ph 為正或負(fù)的情形。2駐波周期比2.1周期比計(jì)算方法1802.1.1駐波的構(gòu)造假定有兩列頻率相同(都為w )的波,其波數(shù)分別為 k r 和 kl加以后的拉格朗日位移可以寫為( kr kl )。那么這兩列波疊xx ( x, z;

22、 t ) = rexx,l ( x ) exp-i (wt - kl z ) + rexx,r ( x ) exp-i (wt - kr z )(19)% %。我們?nèi)〈牌拈L度為 l,且磁片兩端分別為 z = 0, l 。為了構(gòu)造駐波,我們要求磁片兩端四185點(diǎn)在任意時刻,其拉格朗日位移都為零,即xx (d, 0;t ) = xx (d, l;t ) = 0 。(20)首先考慮 x = d , z = 0 這一點(diǎn),將其帶入(19)式,可以得到:x,lx,rx% (d ) = -x% (d ) 。(21)x,l x這意味著我們不妨取x% (d ) = a 為實(shí)數(shù),并將其代入(19)式:xx (

23、d , z; t ) = ax cos (wt - kl z ) - cos (wt - kr z )= -2 asin kr - kl z sin wt - kl + kr z 。(22)x 22結(jié)合(20)式,我們?nèi)?z = l ,得到:190kr - kl= 2p n , n = 1, 2,. 。(23)l這就是磁片模型下,構(gòu)成駐波的兩列行波的波數(shù)所需滿足的條件。一般地,我們稱 n = 1 時 的駐波為基模, n = 2 時為其第一諧模。1952.1.2波模的選取以圖 1b 為例,我們可以將 vph - k 圖轉(zhuǎn)換成w - k 圖(圖 2)。圖中第一、二象限的圖形分別來自圖 1b 的上、

24、下部分。其中第二象限的圖形是通過將 (+k, -vph ) 的曲線轉(zhuǎn)換成(-k, -vph ) ,即由 -w 轉(zhuǎn)換成 +w 后得到的。圖 2a 和 2b 依次為 kink 和 sausage 模的情形。 現(xiàn)在考慮圖 2 中各支波模的組合,來看其是否能構(gòu)成駐波。首先來看 kink 模和 sausage 模的組合。我們知道 kink 和 sausage 模的拉格朗日位移分別為 x 的偶函數(shù)和奇函數(shù)。假定 k r和 kl 分別為 sausage 模和 kink 模的波數(shù),那么根據(jù)(22)式,可得xx (-d , z; t ) = ax cos (wt - kl z )+ cos (wt - kr z

25、 )200= 2 acos kr - kl z cos wt - kl + kr z 。(24)x 22由上式可以發(fā)現(xiàn),對于滿足(23)式的 kink 和 sausage 模組合,其 z = 0, l 節(jié)點(diǎn)處的拉格朗日 位移并不恒為零。這意味著,kink 和 sausage 模的組合無法構(gòu)成駐波。205圖 2:色散關(guān)系圖。(a) 駐立 kink 模,(b)駐立 sausage 模。fig2:dispersion diagram. (a) standing kink modes, (b) standing sausage modes.再看圖 2a 中快慢 kink 模的組合。我們可以通過磁片中密

26、度擾動與拉格朗日位移的比值關(guān)系來驗(yàn)證00r r0 =dm2 (w - ku 2 )2pt,(25)xd 2 2( )2 dpdxxk c0 -w - ku 0t其中, p%t 為總壓擾動的傅里葉振幅。對于體波,由210可以得到dp%tdx p% = tn0 cot ( n0 x )-n0 tan (n0 x )kink sausage(26)r r (v- u )2 (n d ) tan (n d )kink 0=ph0 00。(27)c2x d (vu )2- (n d ) cot (n d )sausagex x=d ph - 0- 000e考慮細(xì)磁片情形( kd 0 )下的 bfk1,其

27、相速度 vph -va,且 no d 0 。由此上式可簡r2x化為 r0 (v ph -u0 )( )2 。結(jié)合 c2 = v2 ,并忽略背景流動的存在,我們得到該比值近似00x d (v ph-u )2 -c2n0 d 0 a0215為一個非常小的值 ( rr -1) (kd )2 。這就意味著對于快 kink 模,拉格朗日位移相較密度0 e擾動更為顯著。考慮 kd 0 近似下的慢模,我們得到 (vpht0- u0)2 c2 。那么(27)式中 kink模情形可近似為 - (v2c2 )(n d ) tan (n d ) 。結(jié)合(9)式,我們發(fā)現(xiàn)當(dāng) n d ( j -1 2)p 時,ae 0

28、 o 0 0220225230該比值是一大數(shù)。這就是說,與快 kink 模相反,慢模情形下的密度擾動更為顯著。那么若快慢 kink 模疊加后形成駐波,振幅達(dá)到磁片寬度量級的橫向位移會導(dǎo)致相對振幅超過 1 的 密度擾動。也就是說,磁片在如此小的位移條件下,其內(nèi)部某些位置的密度會變?yōu)榱隳酥霖?fù) 值!因此,快慢 kink 組合構(gòu)成駐波是不現(xiàn)實(shí)的。再看快慢 sausage 模的組合。以 fss(bss)和 ffs1(bfs1)為例,由圖 2b 可以看到,此 類駐波的存在要求磁片橫縱比 d l 相當(dāng)大。對 fss 和 bfs1 疊加的情形,駐波的出現(xiàn)要求 d l 不小于 0.72,如此大的橫縱比在觀測上或

29、許并不現(xiàn)實(shí)。最后來看快 kink 與快 kink 模,或快 sausage 與快 sausage 模的組合。若選取 bfk2 或 bfs2 等高次諧模來構(gòu)造駐波,與快慢 sausage 模的組合相似,同樣要求支持駐波出現(xiàn)的磁 片 d l 相當(dāng)大。以 ffk2 和 bfk2 的組合為例,駐波的出現(xiàn)要求磁片 d l 要大于 0.85,而 ffs1 和 bfs2 的組合更是要求 d l 大于 0.95。結(jié)合以上的討論,我們的計(jì)算只考慮 bfk1 和 ffk1,以及 bfs1 和 ffs1 這兩類組合形成的駐波。2.1.3周期比的計(jì)算由(23)式,結(jié)合色散關(guān)系圖(圖 2),我們構(gòu)建了一種在給定 d l

30、 條件下,計(jì)算p1 2 p2 的簡單圖形方法。以圖 2a 為例,假定一條水平虛線與 bfk1 和 ffk1 這兩支模的交235點(diǎn)分別為 a 和 b。對于給定的 d l ,由(23)式可得,滿足 ab = 2p d l 時的角頻率即為基模角頻率;而滿足 ab = 4p d l 時的角頻率即為其第一諧模的角頻率。由此即可計(jì)算駐波周期比 p12p2 = w22w1 。2.2駐立 kink 模的周期比圖 3 即我們根據(jù)上述方法計(jì)算得到的駐立 kink 模周期比 p12 p2 與磁片橫縱比 d l 的關(guān)系圖。我們考慮了一系列背景流動( m a = 0, 0.2, 0.4, 0.8 )的情形,分別用不同的

31、顏色表示。240可以看到,這五種情形下的曲線都有相類似的變化趨勢:當(dāng) d l 較小時, p12 p2 由 1 開始減小;隨著 d l 增大, p12 p2 減小至最小值 ( p12p2 )min后又開始增大。與靜態(tài)情形相比,隨著背景流動的增大, p12 p2 偏離 1 的程度也相應(yīng)增大。以 ( p12p2 )min為例,靜態(tài)情形和背景流動 m a = 0.8 時的周期比值分別為 0.851 和 0.657,其減小幅度達(dá)到 22.8%。在這兩種情形下出現(xiàn) ( p12p2 )min的橫縱比 (d l)min為 0.137 和 0.139??疾?d l 更小時的情形,以其245取值 0.03 為例,

32、靜態(tài)情形下 p12p2 = 0.939 ;而片內(nèi)流動 m a = 0.8 時 p12p2 = 0.8 。這就說明,即使在 d l 較小時,背景流動的存在對于周期比的影響也是不可忽略的。與 macnarama& roberts38相比較,我們的研究得到了相同的結(jié)論:即使在細(xì)磁片情形下,橫向結(jié)構(gòu)化對 于周期比偏離 1 依舊有貢獻(xiàn)。進(jìn)一步地,他們認(rèn)為橫向的密度分層是引起色散的唯一因素。而我們的結(jié)論對此進(jìn)行了補(bǔ)充,即橫向的流動剪切對此也有顯著影響。因此,在用 p12 p2 相250對 1 的偏離來推測縱向分層信息時(如 andries 等28),最好計(jì)入這些由橫向結(jié)構(gòu)化所引起的 色散。當(dāng)磁片內(nèi)外密度比

33、值較大,或片內(nèi)存在強(qiáng)流動的情形下,更是如此。圖 3:駐立 kink 模周期比與磁片橫縱比關(guān)系圖fig3:period rationas a function of the slab aspect ratiofor standing kink modes255圖 4a 和 4b 分別為駐立快 kink 模的最小周期比 ( p12p2 )min和其對應(yīng)的橫縱比 (d l)min與 alfven 馬赫數(shù) m a 的關(guān)系圖。我們分別計(jì)算了內(nèi)外 alfven 速度比 v v = 2, 3, 4 的情形,aea0并用不同的顏色表示。由圖 4a 我們可以看到,對于給定的 alfven 速度比(密度比),背景

34、流動的存在對于 ( p12p2 )有著非常顯著的影響。以 v v = 4 的情形為例,可以明顯看到minae a0( p12p2 )min由靜態(tài)情形的 0.778 減小至 m a = 0.8 時的 0.633,其幅度可達(dá) 18.3%。而當(dāng)260v v = 3 時,這兩種情形下的 ( p2p )分別為 0.802 和 0.64,其減小幅度可達(dá) 20.2%。ae a01 2 min在圖 4b 中我們可以看到,隨著密度比的增大,(d l)min相應(yīng)地減??;而對于密度比給定的情形,m a 的增大則會引起 (d l)min的增大。這一點(diǎn)在 alfven 速度比較大時尤為明顯。以 v v = 2 的情形為

35、例,此時的 (d l)基本都處于 0.138 左右。而當(dāng) v v = 4 時,aea0minae a0可以明顯地看到 (d l)min由靜態(tài)情形的 0.057 增大到 m a = 0.8 時的 0.106??梢园l(fā)現(xiàn),圖中265( p12p2 )min與 (d l)min隨密度比增大而產(chǎn)生的整體變化趨勢與 macnarama & roberts38中圖 10 的情形相一致。但是,他們在采用解析和數(shù)值方法對 epstein 和階梯狀密度分布的情形進(jìn)行研究后發(fā)現(xiàn),靜態(tài)情形下的 ( p12p2 )min不可能小于 2 2 = 0.707 。很明顯地,這一結(jié)論不適用于存在流動剪切時的情形。270275圖

36、 4: 駐模若干參數(shù)對流速的依賴。(a)最小周期比(b)最小周期比出現(xiàn)的橫縱比與alfven 馬赫數(shù)的函數(shù)關(guān)系圖fig4: dependence of a few parameters on the internal alfvenic mach number. (a)the minimal period ratio,(b)the aspect ratio at which the minimum is attained, as a function of the alfvenicmach number 2.3駐立 sausage 模的周期比下面我們來看駐立 sausage 模的情形。圖 5 是

37、其周期比 p12 p2 與磁片橫縱比 d l 的函數(shù)關(guān)系圖。圖中實(shí)線和虛線分別代表 v v = 2, 4 的情形。我們的計(jì)算考慮了一系列的背ae a0景流動,分別用不同的顏色表示。先看 v v = 2 的情形??梢园l(fā)現(xiàn)在我們所考慮的 d l 范ae a0280圍內(nèi)(0.1-0.5),只出現(xiàn)了 m a = 0, 0.1, 0.2 三種情形下的曲線。從圖中可以看到這三條曲線部分重疊在一起,并由不同的 d l 值開始出現(xiàn)。靜態(tài)情形下,其截止橫縱比 (d l)cutoff為 0.3;隨著背景流動增大至 0.1 和 0.2,(d l)cutoff也相應(yīng)地增大至 0.33 和 0.39。這就是說,在alf

38、ven 速度比給定的條件下,與靜態(tài)情形相比,帶有背景流動的磁片只有達(dá)到一定寬度才能支持駐立 sausage 模的出現(xiàn)。這一結(jié)論同樣可以在 v v = 4 的情形下得到。此時靜態(tài)情形ae a0285下的 (d l)cutoff= 0.134 ;而 m a 為 0.2 和 0.4 時的 (d l)cutoff分別為 0.157 和 0.232。與v v = 2 的情形相比,情形下背景流動對于的影響更為顯著。以ae a0d l = 0.35 為例,可以看到靜態(tài)情形下和背景流動 m a = 0.5 時分別為 0.69 和 0.654,其變化幅度為 5.2%。比較圖 5 中的實(shí)線和虛線,可以得到與 ma

39、cnamara & roberts38一致的結(jié)論,即和 (d l)cutoff對于 va va 有著較強(qiáng)的依賴性。我們還發(fā)現(xiàn),在給定密度比e0290295的情形下,雖然背景流動的存在對于駐立 sausage 模的影響不如 kink 模那么顯著,但是其在決定支持駐波出現(xiàn)的磁片范圍時有著不可忽視的作用。圖 5:駐立 sausage 模周期比與磁片橫縱比關(guān)系圖fig5:period rationas a function of the slab aspect ratiofor standing sausage modes圖 6:截止橫縱比與 alfven 馬赫數(shù)關(guān)系圖fig6:the cutoff

40、aspect ratioas a function of the alfvenic mach number 在圖 6 中我們進(jìn)一步研究了駐立 sausage 模情形下,對于 (d l)cutoff的影響。圖中300不同顏色的實(shí)線分別表示 v v = 2, 3, 4 的情形。根據(jù)(15)式,我們可以得到 (d l) 的aea0cutoff下限,即(l + + l-+-) g1 2p = (l + l )4 。(28)上式近似為2 2 =1 1v ae - m -1 + 1v ae + m -1 。(29)4v a0a av a0 305 由此可以發(fā)現(xiàn),在我們所考慮的參數(shù)范圍內(nèi),該近似值對于 m

41、a 并不具有非常強(qiáng)的依賴性。 在圖 6 中,我們用虛線描述該近似值與 m a 的函數(shù)關(guān)系??梢钥吹?,隨著 m a 的增大,計(jì)算值與解析值的偏差相應(yīng)增大。與解析值相比較,(d l)cutoff的計(jì)算值對 m a 有著非常強(qiáng)的依賴性。這顯然是由于w - k 關(guān)系圖(圖 2b)中越來越強(qiáng)的不對稱性所造成的。3103結(jié)論截至目前,唯有 macnamara & roberts38對日冕磁片的多周期現(xiàn)象進(jìn)行了理論方面的研 究。而我們所考慮的背景流動的存在對于日冕磁片周期比的影響,正是對其進(jìn)行的擴(kuò)展與補(bǔ) 充。由w - k 色散關(guān)系圖,并結(jié)合駐波構(gòu)造條件(24 式)我們構(gòu)建了一種用于駐波(包括 kink 模和 sausage 模)計(jì)算的簡單圖形方法。對于 kink 模,與靜態(tài)情形相比,在我們所考,慮的流動參數(shù)范圍內(nèi)的減小幅度可達(dá) 23%。并且當(dāng)存在背景流動時,其 ( p12p2 )min315可能會低于靜態(tài)情形下解析得到的最小值 0.707。特別地,我們發(fā)現(xiàn),即使在細(xì)磁片情形下,流動對于 p12 p2 的影響依舊不可忽略。對于 sausage 模,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論