




已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
806IEEETRANSACTIONSONINDUSTRYAPPLICATIONS,VOL.40,NO.3,MAY/JUNE2004MechanicalDesignConsiderationsforConventionallyLaminated,High-Speed,InteriorPMSynchronousMachineRotorsEdwardC.Lovelace,Member,IEEE,ThomasM.Jahns,Fellow,IEEE,ThomasA.Keim,Member,IEEE,andJeffreyH.Lang,Fellow,IEEEAbstractThispaperdiscussesmechanicaldesignconsid-erationsthatareparticulartoconventionally(i.e.,radially)laminatedrotorsofinteriorpermanent-magnetsynchronousmachines.Focusisplacedonapplicationswheretheradialforcesduetohigh-speedoperationarethemajormechanicallylimitingdesignfactor.Properdesignofthelaminationbridges,orribs,attherotorouterdiameterisexplainedintermsofthebothmaterialconsiderationsandelectromagneticperformanceimpact.Thetradeoffofcomplexityversusperformanceassociatedwithusingstrengtheningribsinthemagnetcavitiesisdiscussed.Thesensitivityofthemechanicaldesignlimitationstotherotor-shaftmountingmechanismisalsohighlighted.Theseeffectsarethenanalyzedusingfinite-elementanalysisfora150-Nm/6-kWintegratedstarter/alternatordesignedforoperationupto6000r/minwithanannularrotortoaccommodateatorqueconverterorclutchassembly.Thisexampledemonstratesthatitispossibletosignificantlyimprovetherotorsstructuralintegrityusingthetechniquesdescribedinthispaperwithonlyaverymodestimpactontheprojectedmachinedrivecost.IndexTermsElectricalsteel,finite-elementanalysis(FEA),highspeed,interiorpermanent-magnet(IPM)synchronousmachine,laminations,magneticsaturation.I.INTRODUCTIONROTORDESIGNandconstructionofinteriorperma-nent-magnet(IPM)machinesisachallengingtaskduetotheconflictingcharacteristicsofimprovedperformanceandrotorcomplexity.IPMmachinesareofinterestbecausetheyareparticularlyattractivefromaperformancestandpointintractionandspindleapplications1,2.IPMmachinescanbedesignedwithwide,andtheoreticallyinfinite,speedrangesforconstantpoweroperationwithexcellentinverterutilization.ThisisachievedthroughuseofasalientrotorgeometrywithlimitedPaperIPCSD03084,presentedatthe2001IEEEInternationalElectricMa-chinesandDrivesConference,Cambridge,MA,June1720,andapprovedforpublicationintheIEEETRANSACTIONSONINDUSTRYAPPLICATIONSbytheElectricMachinesCommitteeoftheIEEEIndustryApplicationsSociety.Man-uscriptsubmittedforreviewNovember5,2002andreleasedforpublicationJan-uary20,2004.ThisworkwassupportedbytheMITConsortiumonAdvancedAutomotiveElectrical/ElectronicComponentsandSystems.E.C.LovelaceiswithSatConTechnologyCorporation,Cambridge,MA02142lUSA(e-mail:).T.M.JahnsiswiththeWisconsinElectricMachinesandPowerElectronicsConsortium,DepartmentofElectricalandComputerEngineering,UniversityofWisconsin,Madison,WI53706-1691USA(e-mail:).T.A.KeimandJ.H.LangarewiththeLaboratoryforElectromagneticandElectronicSystems,DepartmentofElectricalEngineeringandComputerScience,MassachusettsInstituteofTechnology,Cambridge,MA02139USA(e-mail:,).DigitalObjectIdentifier10.1109/TIA.2004.827440fluxcontributionfromPMsburiedwithintherotorstructure.Toachievethedesireddegreeofsaliency,speciallaminationdesignandassemblystrategiesaretypicallyrequiredcomparedtothoserequiredforcompetingmachinetypessuchassurfacePMandinductionmachines.TherotordesignstrategiesforIPMmachinescangenerallybedividedintoaxiallyandradiallylaminatedconfigurations,eachwithitsownadvantages3,4.Theaxiallylaminatedrotorisconstructedusingmanyalternatinglayersofsoftandhardmag-neticsheetsthatarelaidalongtheaxisofthemachine,eachbentandindividuallysizedtoformthepolesoftherotor1.Thisdesignapproachcanachievehigh-inductancesaliencyra-tiosinexcessof10:1.However,theaxiallylaminatedrotorisrelativelyexpensivetomanufactureduetothesortedcut-ting,shaping,andassemblyofthemanydifferentlaminationsthatmustbeemployed.Furthermore,aconstrainingrotorsleevemaybenecessaryforhigh-speedoperationtopreventlamina-tionintrusionsintotheairgap.Suchsleevestypicallyreducethesaliencyduetotheirfinitethicknessesandoftenincreaselossesduetoeddycurrentswhenhigh-strengthstainlesssteel(e.g.,Inconel)ischosenforthesleevematerial.Bycontrast,radiallylaminatedrotorsaretypicallydesignedwith14layersofhardmagneticmaterialineachpole.Eachlamination,aswithotherconventionalmachinetypes,ispunchedorcutasasingleunitarypieceforthecrosssectionoftherotor.Cavitiesarepunchedorcutintotherotorlaminations,andthemagnetmaterialisinsertedintothesecavities.ThelaminationscanbestackedusingconventionalmeanssothattherotorisgenerallyeasiertomanufacturethanitsaxiallylaminatedIPMcounterpart.However,adoptionoftheradiallylaminatedrotorcomesattheexpenseofsaliencywithtypicalinductanceratiosrangingfrom1.5upto10:1,dependingonthenumberofmagnetcavitylayersandtheirconfiguration.Forgoodelectromagneticperfor-mance,itisnecessarytominimizethesteelbridgessurroundingthemagneticcavitiesthatarenecessarytolinktherotorironsegmentsintoaunitarylamination.Eachbridgeeffectivelycre-atesamagneticshortciruitacrossthePMs,therebyreducingthemagnetscontributiontotheoverallair-gapflux.Thispaperexaminesthemechanicaldesignissuesofcon-ventionally(alsoreferredtoastransverseorradially)laminatedIPMrotors.Onlythecentrifugalforceisconsideredasthisislikelytobethedominantsourceofmechanicalstressinhigh-speeddesigns.Eachofseveralkeyrotordesignfeaturesareex-aminedinturnwithrespecttotheirinfluenceontherotorstress0093-9994/04$20.002004IEEELOVELACEetal.:CONVENTIONALLYLAMINATED,HIGH-SPEED,IPMSYNCHRONOUSMACHINEROTORS807Fig.1.Crosssectionofa12-poleIPMmachine.stateandelectromagneticperformance.Designstrategieswithrespecttofeaturesthatcanmitigatetheresultantmechanicalstressstatearealsopresented.Thediscussionissubstantiatedthroughfinite-elementanalysis(FEA)toverifythearguments.AnIPMrotordesignforanintegratedstarter/generator(ISG)applicationisusedthroughoutthepapertoillustratethesignif-icanceofthesemechanicalissues57.Acrosssectionfora12-poletwo-layerdesignisshowninFig.1.Inparticular,themechanicalstressstateofthisrotorisalimitingdesigncon-straintduetothehighrotortipspeedoperationthatisrequiredofannulardirect-driveautomotivemachinery.ThepertinentdesignspecificationsforthisISGdesignare:6000-r/minmaximumoperatingspeed;10000-r/mindesignburstspeed;minimumrotorinnerdiameter(ID)mm;maximumstatorouterdiameter(OD)mm;bondedPMmaterialincavities.II.MECHANICALDESIGNOFIPMROTORSForthepurposeofthisdiscussion,themechanicaldesignpointcorrespondstotheapplicationspecificationthatproducestheworstcasemechanicalstressintheIPMrotor.Theassump-tionsemployedinthisdevelopmentareasfollows:steady-statespeedconditionsonly;temperatureeffectsneglected;baselinecorematerial:M1929-gageelectricalsteel;yieldindicatedbyplanarVonMisesstress;forcesofelectromagneticoriginconsiderednegligible;vibrationandrotorshaftdynamicalforcesneglected.Withtheseassumptions,theforcesontherotoraredominatedbythesteady-statecentrifugalforcesatconstantspeed.There-fore,themechanicaldesignpointcorrespondstosteady-stateoperationatthedesignburstspeedvalue,10kr/min.AnalyticalcalculationsofthepeakstressesduetocentrifugalforcesactingonaradiallylaminatedIPMmachinerotorisachallengingtaskthatisnotattemptedinthispaperduetothecomplexityoftherotorlaminationdesignfeatures.However,thesepeakstressesaffecttheboundariesoftheoptimizationvariablesthatdeterminetheoptimalsystemdesign,soaquali-tativediscussionoftheresultantforcesduetoinertialloadingisappropriate.Thediscussionisconductedemployingwell-Fig.2.Sketchofresultantforcesonasolidrotor.Fig.3.SketchofresultantforcesonanIPMrotorwithonemagnet-filledcavity.knownprinciplesthatdescribethebehaviorofmaterialsunderstaticloading8,9.Fig.2showsasolidrotorcrosssectionwithannotationstoindicatethemajorforcesonthecoreduetocentrifugalloading.Atthesimplestlevel,neglectingthemagnetcavities,therotorresemblesahoopwithconstantcentrifugalloading.Undertheseconditions,anelementalmemberoftherotorisundertangentialtensionandradialcompression.Thin-walledhoopapproximationscanbejustifiedformod-elingtherotorbecauseofthenarrowdepthoftheISGrotorincomparisontotherotorID.Asaresult,therotorsegmentsmainlyexperiencetangentialtensionforces.Usingthisassump-tion,themajorfactorsaffectingthepeakstressaretheaverageradiusofthe“hoop”andtherotationalspeed.TheVonMisesstressincreasesaccordingtothesquareofeachofthesefactors.IftherotorcavitiesarenowconsideredasinFig.3,whichonlycontainsonecavitylayer,thesteelpolepiececenteredontheaxisisnowonlyattachedtotherestofthelaminationbythethinsteelbridgesateachend.Therefore,thecentrifugalloadingonthepolepieceisnotevenlydistributedaroundthe808IEEETRANSACTIONSONINDUSTRYAPPLICATIONS,VOL.40,NO.3,MAY/JUNE2004Fig.4.SketchofresultantforcesonanIPMrotorwithmultiplelayers.rotor“hoop,”causingasubstantiallyradiallydirectedinertialloadonthetworetainingbridges.ItshouldbenotedthatthebondedPMmaterialinthecavitywillalsocontributetothisloadingbecauseitisgenerallylessstiffthanthesteelandwill,therefore,contributeadditionalloadingagainsttheinsideedgeofthepolepiece.Therefore,theequivalentmagnetmass,inFig.3,mustbethesumofboththesteelpolepieceandthemagnet(theshadedportionofFig.3).Thebondedmagnetmaterialdoesnotprovideanysignificantbondingbetweenmagnetandsteeland,therefore,doesnottransmitforcefromtheyoketothepolepieces.Thechallengethenreducestomodelingthebridges,andthisislargelydependentonthespecificbridgeshape.Ifthebridgesareprincipallystraight,thenbeambendingapproximationsareappropriate.WhenmultiplelayersareconsideredasinFig.4,eachlayercanbeconsideredasbeingindependentlyloadediftheinter-cavitysteelsectionsarewideenoughtodistributeanystressconcentrationsbetweenadjacentbridges.Theloadoneachbridgeisthentheendloadintheradialdirectionduetotheinertialloadingontheremainingsectionofthepolepiecebetweenthebridgeunderconsiderationandtheaxis.Ifthebridgesoneachlayerhavethesamedimensions,thebridgeattheendofthelongestcavitywillbeunderthehigheststress.IfthecavityendsareroundedasshowninFig.5,thentheeffectivelengthofeach“beam”isreduced,andthesimplebeamapproximationsdescribedabovearenolongerreasonable.EachtaperedbridgenowresemblesaroundnotchstressconcentrationelementundersideloadingasshowninFig.5.Thepreciselocationofthepeakstresswithineachbridgeconfigurationwouldrequiresignificantanalysistodeterminewithoutresortingtonumericalsolutions.Inparticular,theequivalentmounting(fixedorsimple)attheendsofeach“beam”forthestraight-bridgemodelisnotclearlydefined.Iftheendsofeachbridgeexperienceminimalbendingcomparedtotherestofthebridge,itisreasonabletoassumethatthepeakstresswillbefoundattheends.Incontrast,thepeakstressintheroundedcavitystructuralmodelwouldbeexpectedattherootofthestressconcentration,correspondingtothemidpointofeachbridge.Fig.5.SketchofresultantforcesonanIPMrotorwithmultiplecavitylayerswithroundedtips.Atthisstage,somegeneralobservationscanbemadeaboutIPMrotordesigndecisionsthatwouldworsenorimprovethemechanicalstressconditions.MaximumrotorspeedA10%reductioninthemechan-icaldesignpointspeedwouldreducethepeakVonMisesstressbyalmost20%.RotorODSimilarly,a10%reductionintheradiusattherotorsurface,wherethebridgesarelocated,wouldalsoreducethestressbya20%factor.RoundedbridgesThe“beam”stressesarereducedasthe“beam”getsshorterwithallotherdimensionsequal.Basedonthecharacteristicsofthenotchstressconcen-trationmodel,acircularlyroundedbridgeshapeshouldnearlyminimizethepeakstress.SmallerpolepiecesA10%reductionofthedeflectingpolepiecemassperunitaxiallengthwillreducethestressalmostlinearly.Thiscanbeachievedbyreducingthefrac-tionofthepolepitchthatthecavitiesspan.Increasingthenumberofmachinepolescanproducethesameeffect.StrengtheningribAddingaribredistributesthecen-trifugalloadfromthepolepieceresultinginasignificantimprovementinthestressstate.Aribthatisaddedtothelaminationgeometryacrosstheaxisofeachcavityresiststhecentrifugalmotionofthepolemassesthroughtensionratherthanbending.Anotherfactorintheresultantforcescausedbytheinertialloadingistheeffectthattheradialdeflectionoftheentirerotorhasonthemagnitudeofthetensilecomponentofhoopstress.Thehooptensioninthebridgeisduetostretchingastherotorexpandsintotheairgapathigherspeeds.TheimplicitboundaryconditionsinhoopstresscalculationsarethattherotorIDandODboundariesareunconstrained.Asaresult,reductionofthedeflectionateitherboundarywillreducetheexpansionoftherotoratthebridgeradiusandthereforealsoreducethehoopstresscomponentofloading.ConstrainingtherotorODisproblematicsinceitwouldre-quireamaterialsubstantiallystifferthansteeltodecreasetheradialdeflectionunderinertialload.Furthermore,addinganyLOVELACEetal.:CONVENTIONALLYLAMINATED,HIGH-SPEED,IPMSYNCHRONOUSMACHINEROTORS809Fig.6.RotorhubdesignusingdovetailedjointsbetweenthehubandrotorID.Fig.7.Rotorhubdesignusingaxialboltsthroughthestacktoanendplate.materialintheairgapthatadverselyaffectstheelectromagneticsaliencyoftheoriginalrotorwoulddegradetheperformanceofthemachine.ConstrainingtherotorIDisamorefeasiblesolutionforimprovingthestructuralintegrityoftherotor.Sincethereisalreadyahubthatmustattachtherotortothecrankshaft,thereisanopportunitytospeciallydesignthehubtoretaintherotorradially.Typically,ahubisonlydesignedtotransmitthetorqueinthecircumferentialdirectionaswouldoccurwithahubthatispressfitinsidetherotor.Apressfit,though,doesnothingtoconstraintherotorIDandsowouldnotmitigatethemaximumstressatthemechanicaldesignpoint.IftherearenospaceconstraintsinsidetherotorID,avarietyofdifferenthubfixturesmightbeconsidered.Aweldedhubmayworkbutcouldalterthemagneticpropertiesofthecore.OnealternativeisanaxialcylinderthatmateswiththerotorIDusingdovetailedsurfacesasshowninFig.6.Anotheralternativeistoconstructanendplatewithstudsdistributedaroundthecircumferenceoftheendplate(oneperpole)asshowninFig.7.Thelaminationswouldbecutwithaholealongeachaxiswherethecoreiswidest(i.e.,therenocavitiesalongtheaxis),andthenassembledontothestuds.Thisboltedsystemisonlypracticalifsufficientbolttensioncanbedevelopedandmaintainedsothattheradialloadistakenupbytheendplate.Ifadequatebolttensionisnotdeveloped,therewillbesignificantside-loadingonthestudsthatwouldlikelyresultinshearingoffthestudsatthesurfaceoftheendplate.Theadvantageofthedovetailfixture(Fig.6)oranyfixturealongtherotorIDsurfaceisthatitisstructurallyrobustandnearlysymmetriciftheradialplateportionofthehubislo-catedaxiallynearthemidpointoftherotorstack.Itschiefdis-advantageisthatthehubcylinderhasafinitethicknessthatmaymakeitnecessarytoreducetheavailablespacefortherotorlaminations.Incontrast,theadvantageofanendplatestructure(Fig.7)isthattheradialplateisattheendofthestackanddoesnotuseanyinternalrealestateinsidetheIDthatmightotherwisebere-servedforaclutchortorqueconverter.Asaresult,thisapproachmayyieldthemostcompactISGconfiguration.Furthermore,theabsenceoftheinternalhuballowstherotortobedesignedwiththesmallestpossibleIDandOD,whichwillreducethepeakstress(squaredimpactonstress).However,anyendplateapproachmustsolvethepracticalinstallationproblemsassoci-atedwithheavilyloadedstudsandcompressedlaminations.InSectionIII,theend
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津現(xiàn)代職業(yè)技術(shù)學(xué)院《外國(guó)文學(xué)名著影視鑒賞》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽(yáng)科技學(xué)院《鑄造創(chuàng)新創(chuàng)業(yè)訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 荷塘創(chuàng)意美術(shù)課件
- 西安理工大學(xué)高科學(xué)院《化學(xué)工程與工藝專業(yè)英語(yǔ)及文獻(xiàn)檢索》2023-2024學(xué)年第二學(xué)期期末試卷
- 云南能源職業(yè)技術(shù)學(xué)院《飛機(jī)鈑金成形原理與工藝》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海杉達(dá)學(xué)院《建筑人的生涯意識(shí)喚醒與自我探索》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆交通職業(yè)技術(shù)學(xué)院《電子商務(wù)概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 保山學(xué)院《城市規(guī)劃原理及設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 哈爾濱廣廈學(xué)院《世界經(jīng)濟(jì)政治與國(guó)際關(guān)系》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢城市職業(yè)學(xué)院《熱工測(cè)量及自動(dòng)化》2023-2024學(xué)年第二學(xué)期期末試卷
- GB/T 42602-2023大型鍛鋼件的鍛造規(guī)范
- 國(guó)家開(kāi)放大學(xué)最新《監(jiān)督學(xué)》形考任務(wù)(1-4)試題解析和答案
- 食管癌教學(xué)查房
- 教練技術(shù)第一階段導(dǎo)師講義
- 國(guó)際學(xué)術(shù)交流英語(yǔ)知到章節(jié)答案智慧樹(shù)2023年哈爾濱工業(yè)大學(xué)
- 公路水運(yùn)工程施工企業(yè)(主要負(fù)責(zé)人和安全生產(chǎn)管理人員)考核大綱及模擬題庫(kù)
- 01SS105 常用小型儀表及特種閥門(mén)選用安裝
- 架橋機(jī)安裝拆除監(jiān)理細(xì)則
- GB/T 25156-2010橡膠塑料注射成型機(jī)通用技術(shù)條件
- GB/T 23999-2009室內(nèi)裝飾裝修用水性木器涂料
- GB/T 21063.4-2007政務(wù)信息資源目錄體系第4部分:政務(wù)信息資源分類
評(píng)論
0/150
提交評(píng)論